Распространение света принцип гюйгенса. Принцип Гюйгенса – Френеля. Диффузное и зеркальное отражение

Главная / КПП

Принцип Гюйгенса

Обосновывая волновую теорию света, Гюйгенс предложил принцип, который позволял наглядно решать некоторые задачи распространения и преломления света. Смысл его в том, что: Если в какой - либо момент времени известен световой волновой фронт, то для того, чтобы определить его положение через некоторый промежуток времени равный $\ \triangle t$, то каждую точку фронта следует рассматривать как источник сферической волны, построить вокруг такого вторичного источника волн сферу, имеющую радиус $c\triangle t$, где $c$ - скорость света в вакууме. При этом поверхность, которая огибает вторичные сферические волны, будет являться фронтом исходной волны через заданный промежуток времени $\triangle t$.

По физическому содержанию принцип Гюйгенса выражает взгляд на свет как непрерывный процесс в пространстве. При использовании принципа Гюйгенса можно объяснить почему, волны света попадают в область геометрической тени.

Основной проблемой принципа Гюйгенса является то, что он не учитывает явления интерференции света. Этот принцип не дает сведений об амплитуде и интенсивности волн.

Принцип Гюйгенса - Френеля, его аналитическое выражение

Определение 1

Френель развил принцип Гюйгенса, и это положение стало формулироваться так: Любая точка, принадлежащая волновому фронту, превращается в источник вторичных волн (это из принципа Гюйгенса), при этом вторичные источники являются когерентными между собой и испускаемые ими вторичные волны интерферируют. Для поверхности, совпадающей с волновой поверхностью, мощности вторичного излучения равных по площади участков одинаковы. Причем свет, распространяющийся от каждого вторичного источника идет в направлении внешней нормали.

Рэлей обобщил вышеназванный принцип:

Окружим все $S_1,S_2,S_3,\dots $ замкнутой поверхностью $(F)$ произвольной формы. При этом любую точку поверхности $F$ можно считать вторичным источником волн, которые распространяются по всем направлениям. Данные волны когерентны, так как возбуждены одними и теми же первичными источниками. Световое поле, которое появляется, как результат их пространственной интерференции, за пределами поверхности $F$ совпадает с полем реальных источников света.

Так, реальные источники света можно заменить светящейся поверхностью, которая их окружает. Причем, по всей этой поверхности как бы непрерывно распределены когерентные вторичные источники световых волн. Отличие этой гипотетической поверхности в том, что она прозрачна относительно любого излучения.

Предположим, что источник света монохроматический, среда однородная и изотропная. Таким образом, в соответствии со скорректированным принципом каждый элемент поверхности волны $S$ (рис.1) является источником вторичной сферической волны, имеющей амплитуду пропорциональную размерам данного элемента ($dS$).

Рисунок 1.

От любого участка $dS$ волновой поверхности в точку $А$ (рис.1), которая находится перед поверхностью $S$, приходит колебание, которое можно описать следующим уравнением:

где $\left(\omega t+{\alpha }_0\right)$ - фаза колебаний в месте нахождения поверхности $S$, $k$ - волновое число, $r$ - расстояние от элемента поверхности ($dS)$ до точки $A$, $a_0$ - амплитуда колебания света в месте нахождения элемента $dS$. $K$ - коэффициент, зависящий от угла $\varphi $ между нормалью $\overrightarrow{n}$ к площадке $dS$ и направлением от нее к точке $4А$. Если $\varphi =0,\ $то мы имеем $K=K_{max}$, при$\ \ \varphi =\frac{\pi }{2}$ $K=0.$

Суммарное колебание в точке А находится как суперпозиция колебаний, которые берутся для всей волновой поверхности $S$, то есть:

Формула (2) является интегральной формулировкой принципа Гюйгенса - Френеля.

Трактовка принципа Гюйгенса - Френеля

Френель искусственное предположение Гюйгенса об огибающей вторичных волн, заменил четким физическим положением, по которому вторичные волны, складываясь, интерферируют. При этом свет виден в максимумах интерференции, там, где волны взаимно гасят друг друга, имеется темнота. Так, объяснен физический смысл огибающей. К огибающей вторичные волны подходят в одинаковых фазах, поэтому интерференция вызывает большую интенсивность света. Принцип Гюйгенса - Френеля поясняет отсутствие обратной волны. Вторичные волны, которые распространяются от волнового фронта вперед, идут в свободное от возмущения пространство. При этом они интерферируют только между собой. Вторичные волны, которые идут назад, попадают в пространство, где уже присутствует прямая волна, так вторичные волны гасят прямую волну, следовательно, после прохождения волны пространство на ней не имеет возмущений.

В формулировке Рэлея рассматриваемый принцип означает, что волна, которая отделилась от своего источника, далее существует автономно, не зависит от присутствия источников.

Принцип Гюйгенса - Френеля позволяет объяснить явление дифракции.

Пример 1

Задание: Запишите выражение для напряженности электрического поля ($E$) в волне, если считать, что волна сферическая и распространяется свободно.

Решение:

Рисунок 2.

Рассмотрим свободное распространение сферической волны в однородной среде (рис.2), его можно описать, используя уравнение:

Вспомогательной волновой поверхностью в нашем случае является поверхность S, имеющая радиус $r_0$. По утверждению Френеля каждый элемент этой поверхности ($dS$) испускает вторичную сферическую волну. При этом волновое поле, испускаемое элементом $dS$ в точке $А$ найдем как:

Используя гипотезу Френеля имеем:

где $K\left(\alpha \right)$ - функция, зависящая от длины волны и угла между нормалью к фронту волны и направлением распространения вторичной волны (рис.2).

Полное волновое поле в точке $А$ представим интегралом:

Примем в качестве элемента $dS$ площадь кольца, которое вырезается из волнового фронта двумя бесконечно близкими концентрическими сферами центры которых находятся в точке $А$ (рис.2). В таком случае, можно записать, что:

В качестве переменной интегрирования примем расстояние $r_1.$ Величины $r_0$ и $r$ считаем постоянными. Из треугольника $DOA$ найдем:

\[{r_1}^2={r_0}^2+{\left(r_0+r\right)}^2-2r_0\left(r_0+r\right)cos\beta \left(1.6\right).\]

Продифференцируем выражение (1.6), имеем:

Подставим выражение (1.7) для $dS$ в формулу (1.4), получим:

где функцию $K\left(\alpha \right)\ \ рассматриваем\ как$ функцию $r_1$. При этом $r_{max}=r+2r_0.$

Ответ: $E=\frac{2\pi A_0}{\left(r_0+r\right)}e^{i\left(\omega t-kr_0\right)}\int\limits^{r_{max}}_r{K\left(r_1\right)e^{-ikr_1}}dr_1.$

Пример 2

Задание: Как используя принцип Гюйгенса - Френеля объяснить явление дифракции?

Решение:

Допустим, что плоская волна падает на экран перпендикулярно отверстию в нем. Согласно принципу Гюйгенса - Френеля каждая точка участка, волнового фронта, который выделяется отверстием в экране, становится источником вторичных волн. Если среда является однородной и изотропной вторичные волны являются сферическими. При построении огибающей вторичных волн для фиксированного момента времени получится, что фронт волы заходит в область геометрической тени, что означает, что волна огибает отверстие.

Дифракция света – в узком, но наиболее употребительном смысле – огибание лучами света границы непрозрачных тел (экранов); проникновение света в область геометрической тени. Наиболее рельефно дифракция света проявляется в областях резкого изменения плотности потока лучей: вблизи каустик, фокуса линзы, границ геометрической тени и др. дифракция волн тесно переплетается с явлениями распространения и рассеяния волн в неоднородных средах.

Дифракцией называется совокупность явлений , наблюдаемых при распространении света в среде с резкими неоднородностями, размеры которых сравнимы с длиной волны, и связанных с отклонениями от законов геометрической оптики .

Огибание препятствий звуковыми волнами (дифракция звуковых волн) наблюдается нами постоянно (мы слышим звук за углом дома). Для наблюдения дифракции световых лучей нужны особые условия, это связано с малой длиной световых волн.

Между интерференцией и дифракцией нет существенных физических различий. Оба явления заключаются в перераспределении светового потока в результате суперпозиции волн.

Явление дифракции объясняется с помощью принципа Гюйгенса , согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн , а огибающая этих волн задает положение волнового фронта в следующий момент времени.

Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис. 9.1). Каждая точка участка волнового фронта, выделенного отверстием, служит источником вторичных волн (в однородной изотопной среде они сферические).

Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т.е. волна огибает края отверстия.

Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде и интенсивности волн, распространяющихся по разным направлениям.

Решающую роль в утверждении волновой природы света сыграл О. Френель в начале XIX века. Он объяснил явление дифракции и дал метод ее количественного расчета. В 1818 году он получил премию Парижской академии за объяснение явления дифракции и метод его количественного расчета.

Френель вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн.

При рассмотрении дифракции Френель исходил из нескольких основных положений, принимаемых без доказательства. Совокупность этих утверждений и называется принципом Гюйгенса–Френеля.

Согласно принципу Гюйгенса , каждую точку фронта волны можно рассматривать как источник вторичных волн.

Френель существенно развил этот принцип.

· Все вторичные источники фронта волны, исходящей из одного источника, когерентны между собой.

· Равные по площади участки волновой поверхности излучают равные интенсивности (мощности).

· Каждый вторичный источник излучает свет преимущественно в направлении внешней нормали к волновой поверхности в этой точке. Амплитуда вторичных волн в направлении, составляющем угол α с нормалью, тем меньше, чем больше угол α, и равна нулю при .

· Для вторичных источников справедлив принцип суперпозиции: излучение одних участков волновой поверхности не влияет на излучение других (если часть волновой поверхности прикрыть непрозрачным экраном, вторичные волны будут излучаться открытыми участками так, как если бы экрана не было).

Используя эти положения, Френель уже мог сделать количественные расчеты дифракционной картины.

Дифракцией называется отклонение света от прямолинейного распространения, огибание волнами препятствий. Дифракция заметна, если размеры препятствий сравнимы с длиной волны. Дифракция света всегда сопровождается интерференцией - чередованием светлых и темных мест для монохроматического света и цветных (все цвета радуги) - для белого света. Дифракция объясняется на основе принципа Гюйгенса-Френеля : каждая точка, до которой дошло возмущение, сама становится источником вторичных волн; вторичные волны когерентны; волновая поверхность в любой момент времени является результатом интерференции вторичных волн.

Различают два частных случая дифракции. Дифракцией Френеля называют дифракцию в сходящихся и расходящихся пучках. Дифракция Фраунгофера наблюдается в параллельных лучах. Условие параллельности падающих и дифрагированных лучей можно выполнить, помещая источник света и экран, на котором наблюдается картина дифракции, на большом удалении от препятствия, либо используя линзу, которая может преобразовать расходящийся пучок света в параллельный.

В 1690 г. Гюйгенсом был предложен способ находить положение волнового фронта1 в последующие моменты времени по его положению в данный момент.

Этот способ известен как принцип Гюйгенса и может быть сформулирован следующим образом: каждую точку волнового фронта можно рассматривать как источник вторичных элементарных сферических волн, распространяющихся в переднюю часть полупространства; новое положение волнового фронта совпа­дает с огибающей элементарных волн.

В качестве простого примера применения принципа Гюйгенса рассмотрим волновой фронт АВ на рис. 6. Условимся считать, что среда изотропна, т. е. скорость волн одинакова по всем направлениям. Чтобы найти положение волнового фронта спустя короткий промежуток времени Dt после того, как он занимал положение АВ, проведем окруж­ности радиусом . Центры этих окружностей лежат на исходном волновом фронте АВ, а сами окружности представляют собой элементарные волны Гюйгенса. Огибающая этих элементарных волн - линия CD – определяет новое положение волнового фронта. На рис.6в показано искривление волнового фронта при прохождении волны с плоским фронтом через малое отверстие. В результате дифракции волна заходит в область геометрической тени.

Принцип Гюйгенса позволяет лишь качественно изобразить картину дифракции. Френель дополнил принцип Гюйгенса положением о когерентности вторичных волн. Он предложил учитывать также мощность излучения вторичных источников. Принципом Гюйгенса-Френеля называют совокупность следующих утверждений.

1. Любой реальный источник света S 0 можно заменить системой фиктивных вторичных источников и возбуждаемых ими вторичных волн. В качестве этих источников можно выбрать малые участки волновой поверхности, охватывающей источник.



2. Вторичные источники, эквивалентные одному и тому же источнику S 0 , когерентны.

3. Мощности равных по площади вторичных источников, расположенных на волновой поверхности, одинаковы.

4. Каждый вторичный источник излучает свет преимущественно в направлении внешней нормали к поверхности. Амплитуды вторичных волн в других направлениях тем меньше, чем больше угол между нормалью и данным направлением, и равны нулю при угле, равном p/2.

Для упрощения расчета картин дифракции Френелем был предложен метод зон. Сущность метода зон Френеля рассмотрим на примере определения амплитуды электрического поля сферической волны, возбуждаемой точечным источником S 0 (рис. 7). Френель предложил разбивать сферическую волновую поверхность на кольцевые зоны так, чтобы расстояния от краев каждой зоны до точки наблюдения Р отличались на половину длины волны (напомним, что на волновой поверхности колебания происходят в одинаковой фазе). При таком разбиении каждому малому участку одной зоны найдется соответствующий участок соседней зоны, расстояния которых до точки наблюдения будут отличаться на l/2, и волны от этих участков будут приходить в точку наблюдения в противофазе и ослаблять друг друга. Поэтому и результирующие колебания, создаваемые в точке Р соседними зонами, будут противофазными, т.е. отличаться на p . Несложный расчет позволяет найти выражения для радиусов зон Френеля в зависимости от длины волны l , радиуса волновой поверхности а и расстояния b от волновой поверхности до точки наблюдения (рис. 7):

, (3)

где m – номер зоны Френеля.

Изменение фазы на противоположную можно представить как изменение знака амплитуды на противоположный, поэтому если амплитуду волны, пришедшей в Р от первой зоны Френеля, обозначить через Е 1 , то амплитуде волны, пришедшей от второй зоны, нужно приписать знак минус и обозначить ее как – Е 2 . Знак амплитуды волны от третьей зоны нужно снова сменить на противоположный. Таким образом, амплитуда результирующей волны в точке Р может быть найдена как алгебраическая сумма амплитуд волн от всех зон Френеля:

Как показывает расчет, площади построенных таким образом кольцевых зон примерно одинаковы. Однако из-за увеличения угла между нормалью к участкам поверхности зон и направлением на точку наблюдения абсолютные значения амплитуд монотонно уменьшаются с возрастанием номера зоны: Если записать предыдущее выражение в виде:

, (5)
то, считая, что выражения в скобках равны нулю, а число зон велико, получим, что результирующая амплитуда волны в точке наблюдения равна половине амплитуды волны от первой зоны:

Отсюда следует кажущийся парадоксальным вывод: если на пути света поставить экран Э с малым отверстием, открывающим только первую зону, то амплитуда волны в точке наблюдения возрастет в 2 раза, а интенсивность - в четыре1. Если отверстие в экране Э открывает две зоны, то в точке наблюдения произойдет наложение в противофазе волн от первой и второй зон и амплитуда будет очень малой. Таким образом, при дифракции Френеля на круглом отверстии в центре геометрической тени будет максимум или минимум в зависимости от числа открываемых этим отверстием зон Френеля (рис. 8).

Если на пути света поставить кольцевой экран, который закрывал бы четные зоны Френеля (на рис. 7 они заштрихованы), то амплитуда результирующей волны в точке Р резко возрастет. Действительно, в этом случае амплитуды от четных зон будут равны нулю, выбрасывая их из формулы (4), получаем: . Такой экран называют зонной пластинкой .

Если на пути луча света поставить непрозрачный диск , закрывающий не очень большое целое число зон Френеля, то в центре геометрической тени всегда будет максимум - светлое пятно, независимо от того, какое число зон закрыто - четное или нечетное. Действительно, если записать для данного случая результирующую амплитуду в т. Р (рис.7) в виде, аналогичном формуле (8), начиная с амплитуды m -ной зоны, получим: . На рис. 9 представлена тень от малого диска, осве­щаемого лазером. В центре наблюдается светлое пятно (пятно Пуассона). Видно также, что за пределами геометрической тени наблюдаются светлые и темные кольца. Это также результат дифракции на различных участках диска.

Отметим, что описываемые выше явления наблюдаются только при выполнении некоторых условий: свет должен быть монохроматическим; центр отверстия (диска) должен находиться на прямой, соединяющей источник с точкой наблюдения; края преграды должны быть гладкими (царапины должны быть меньше ширины ближайшей открытой зоны). Для выполнения последнего условия на отверстии (диске) должно укладываться небольшое число зон Френеля, так как ширина кольцевой зоны уменьшается с увеличением ее номера.

Метод зон позволил Френелю объяснить в рамках волновой теории прямолинейное распространение света. Как следует из формулы (3), размер первой зоны Френеля тем меньше, чем меньше длина волны. При а=b= 1 м и l=0,5 мкм радиус первой зоны равен 0,5 мм. Для того чтобы размещение на пути света экрана с отверстием не изменяло бы интенсивность в точке наблюдения, размер отверстия должен быть меньше размера первой зоны. В этом случае свет от источника в точку наблюдения распространяется как бы в пределах очень узкого канала, т.е. практически прямолинейно

Рис. 5.7

Пусть на щель шириной b нормально падает параллельный пучок света (рис. 5.7), имеющий плоскую волновую поверхность. Для определения результирующей амплитуды пучка, распространяющегося за щелью, будем разбивать открытую часть волновой поверхности, расположенной в плоскости щели на ряд параллельных полосок - зон. При угле дифракции j =0 волны от всех зон будут распространяться в одинаковой фазе, поэтому при j =0 наблюдается максимум. При некотором другом угле дифракции j , таком, что волновую поверхность можно будет разбить на две зоны так, что разность хода волн от краев (левых на рис. 5.7) соседних зон D будет равна l/2 , волны от этих зон будут взаимно гасить друг друга и при данном угле дифракции будет минимум. Значение угла j найдем из треугольника АВС : ВС/АВ= sinj или: . Отсюда получим условие первого минимума: b sinj=l. При значении угла дифракции, определяемом соотношением: , волновую поверхность можно разбить на три одинаковых по ширине зоны, так что разность хода от краев соседних зон будет равна l/2 . При этом волны от двух зон полностью погасят друг друга, а волна от третьей зоны будет не погашена и даст небольшой максимум. Нетрудно получить условие этого максимума: b sinj=3(l/2).

Таким образом, при увеличении угла дифракции можно последовательно разбивать площадь щели на четное и нечетное число зон. Общее условие максимумов (кроме нулевого) при дифракции от щели имеет вид:

, (5.3)

а условие минимумов:

J - угол дифракции, - период дифракционной решетки (расстояние между центрами соседних щелей), - число щелей, приходящихся на единицу длины решетки.

Дифракционная решетка раз­лагает белый свет в спектр. С ее помощью можно производить очень точные измерения длины волны


1 волновой фронт – это поверхность, разделяющая области пространства, до которых еще не дошло волновое возбуждение, от областей, вовлеченных в волновой процесс. Волновая поверхность – геометрическое место точек, колебания в которых происходят в одной фазе. По сути, волновой фронт – это самая первая волновая поверхность.

1 Ограничение светового пучка малым отверстием приведет к затемнению плоскости, в которой находится т. Р. Увеличение амплитуды происходит лишь в т. Р и в малой области вблизи нее.

Гордюнин С. А. Принцип Гюйгенса //Квант. - 1988. - № 11. - С. 54-56.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Этот принцип был сформулирован Христианом Гюйгенсом в его «Трактате о свете», опубликованном в 1690 году. В то время уже не возникало больших сложностей при описании движения частиц. В свободном пространстве частицы движутся прямолинейно и равномерно; под влиянием внешних воздействий они замедляются, ускоряются, меняют направление движения (преломляются или отражаются) - и все это можно рассчитать. Вместе с тем, законы распространения волн - отражение, преломление, огибание препятствий (дифракция) не находили объяснения. И Гюйгенс предложил принцип, на основании которого это можно было бы сделать.

Очевидно, на мысль его навели рассуждения о причинах распространения волновых процессов. От камня, брошенного в воду, по поверхности бегут круговые волны. Процесс этот продолжается и после того, как камень упал на дно, т. е. когда уже нет источника, породившего первые волны. Отсюда следовало, что источниками волн являются сами волновые возбуждения. Гюйгенс сформулировал это следующим образом:

Каждая точка, до которой доходит волновое возбуждение, является в свою очередь центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.

Легко представить, например, как распространяются плоские и сферические волны (рис. 1). Огибающей вторичных волн через время Δt является для плоской волны плоскость, сдвинутая на расстояние c Δt , а для сферической - сфера радиусом R + c Δt , где c - скорость распространения вторичных волн, R - радиус первоначальной сферической волны.

По сути, принцип Гюйгенса в такой формулировке является просто геометрическим рецептом построения поверхности, огибающей вторичные волны. Эта поверхность отождествляется с волновым фронтом, и таким образом определяется направление распространения волны.

Гюйгенс первоначально сформулировал свой принцип для световых волн и применил его для вывода законов отражения и преломления света на границе раздела сред. Прежде всего, сам факт наличия отраженной и преломленной волн непосредственно следовал из принципа Гюйгенса, и это уже было большим успехом. По Гюйгенсу, каждая точка границы сред по мере достижения ее фронтом падающей волны становится источником вторичных волн, которые распространяются в обе граничащие среды. Результатом наложения этих вторичных волн в первой среде, из которой падает волна, является волна отраженная, а результатом наложения вторичных волн во второй среде - волна преломленная.

Конечно, мы на основании принципа Гюйгенса не можем ответить на вопрос об интенсивности отраженной и преломленной волн, поскольку для этого нужно знать хотя бы их физическую природу (которая в принципе Гюйгенса вообще не «участвует»). Но геометрические законы отражения и преломления совершенно не зависят ни от физической природы волн, ни от конкретного механизма их отражения и преломления. Они для всех волн одинаковы.

Пусть υ - скорость плоской падающей волны, α - угол ее падения (рис. 2). Тогда фронт падающей волны бежит по границе раздела двух сред со скоростью \(~\frac{\upsilon}{\sin \alpha}\). И отраженная, и преломленная волны порождаются падающей, поэтому их фронты бегут вдоль границы с той же скоростью, т. е.

\(~\frac{\upsilon}{\sin \alpha} = \frac{\upsilon_1}{\sin \alpha_1} = \frac{\upsilon_2}{\sin \alpha_2}\) .

Углы α 1 и α 2 определяют направления распространения фронтов отраженной и преломленной волн. Но так как в плоской волне лучи перпендикулярны волновым фронтам, то эти же соотношения выполняются и для отраженных и преломленных лучей.

Объяснение законов преломления и отражения явилось сильным аргументом в пользу справедливости принципа Гюйгенса. Однако, естественно, он вызывал и много сомнений и вопросов. Почему нет обратной волны (ведь вторичные источники испускают сферические волны, распространяющиеся и против фронта)? Почему свет проходит сквозь отверстие прямолинейно (ведь вторичные волны должны распространяться и в область геометрической тени)? Сам Гюйгенс считал, что все это связано с малой интенсивностью вторичных волн. Но ведь звуковые волны загибаются - мы слышим звук, источник которого находится за углом.

Ответы на эти и другие вопросы дал Огюстен Френель в начале XIX века. Он дополнил принцип Гюйгенса важным и естественным положением:

Результирующее волновое возмущение в данной точке пространства является следствием интерференции элементарных вторичных волн Гюйгенса.

Вторичные волны испускаются «источниками», амплитуда и фаза колебаний которых определяются первоначальным возмущением, и поэтому такие источники когерентны. Совокупное действие этих источников, т. е. интерференционный эффект, заменяет идею Гюйгенса об огибающей, которая в теории Френеля приобрела ясный физический смысл как поверхность, где результирующая волна вследствие интерференции имеет заметную интенсивность. Модифицированный принцип Гюйгенса - Френеля позволяет более полно исследовать вопрос о распространении волн в неоднородной среде (в виду математической сложности этот вопрос выходит за рамки школьного курса физики). Итак, надо ясно представлять как достоинства (простоту и наглядность), так и недостатки (отсутствие физического содержания) первого принципа теории распространения волн - принципа Гюйгенса.

> Принцип Гюйгенса

Изучите принцип Гюйгенса – законы отражения света и рефракции волн. Читайте формулировку принципа Гюйгенса, формула, эффекты дифракции, волновой фронт.

Каждая точка на волновом фронте выступает источником всплесков, распространяющихся вперед на единой скорости.

Задача обучения

  • Выразите принцип Гюйгенса.

Основные пункты

  • Дифракция – волновой изгиб на краю отверстия или препятствия.
  • Этим принципом можно воспользоваться для определения отражения, объяснения рефракции и помех.
  • Передается в формуле: s = vt (s – дистанция, v – скорость распространения, t – время).

Термин

  • Дифракция – волновой изгиб вокруг краев отверстия или преграды.

Обзор

В соответствии с принципом Гюйгенса, все точки на волновом фронте выступают источниками всплесков и распространяются на той же скорости, что и изначальная волна. Новым волновым фронтом будет прямая.

Основа

Кристиан Гюйгенс получил признание за то, что создал метод выявления волнового распространения. В 1678 году он предположил, что все точки, сталкивающиеся со световым возмущением, превращаются в источники сферической волны. Новый вид волны определяется суммой вторичных.

Он не только объяснил линейное и сферическое распространение волн, но и вывел законы отражения света и рефракции в принципе Гюйгенса. Но ему не удалось объяснить дифракционные эффекты – отклонение от прямолинейного распространения, когда свет натыкается на край или помеху. В этом вопросе разобрался уже Августин-Жан Френель в 1816 году. Ниже представлена презентация принципа Гюйгенса в виде схемы.

Принцип Гюйгенса можно использовать для волнового фронта. Все точки излучают полукруглые завитки, перемещающиеся на дистанцию s = vt

Принцип Гюйгенса

На верхнем изображении показан простой пример действия принципа Гюйгенса. Его можно передать в формуле:

s = vt (s – дистанция, v – скорость распространения, t – время).

Созданные волны формируются в полукруги, а новый фронт касается всплесков. Принцип функционирует для всех волновых типов и приносит пользу в характеристики отражения, рефракции и помех. Визуально он также разъясняет рефлексию и используется в ситуациях с преломлением.

Его принцип можно использовать к прямому волновому фронту, перемещающемуся в среду, где скорость ниже. Луч отклоняется к перпендикуляру

Принцип срабатывает, если волны натыкаются на зеркало. Касательная всплесков показывает, что новый волновой фронт отразился под углом, приравнивающимся к углу падения. Направленность устанавливается перпендикулярно (стрелки вниз)

Примеры

Вы часто видите действие этого принципа волны Гюйгенса в обычной жизни, но не замечаете осознанно. Проще всего объяснить на примере звуков. Если кто-то играет на музыкальном инструменте в комнате с плотно закрытой дверью, то вы ничего не услышите. Вам придется открыть ее и встать рядом. Это прямой эффект дифракции. Когда свет проходит сквозь мелкие отверстия, то начинает напоминать звук, но в меньших масштабах.

Дифракция

Дифракция – волновой изгиб, созданный при столкновении с краем отверстия или преградой.

© 2024 bugulma-lada.ru -- Портал для владельцев автомобилей