Применение пероксида водорода в автомобильных двигателях. Пиротехническая химия: Введение в ракетную технику - Федосьев В.И. Двигатели с насосной подачей

Главная / Тюнинг

Данное исследование автору хотелось бы посвятить одному известному веществу. Веществу, подарившему миру Мэрилин Монро и белые нитки, антисептики и пенообразователи, эпоксидный клей и реагент на определение крови и даже применяемому аквариумистами для освежения воды и чистки аквариума. Речь идет о перекиси водорода, точнее, об одном аспекте ее применения - о ее военной карьере.

Но перед тем, как приступить к основной части, автор хотел бы прояснить два момента. Первое - название статьи. Вариантов было немало, но в конце концов было решено воспользоваться названием одной из публикаций, написанных инженер-капитаном второго ранга Л.С. Шапиро, как наиболее четко отвечающим не только содержанию, но и обстоятельствам, сопровождавшим внедрение перекиси водорода в военную практику.


Второе - почему автора заинтересовало именно это вещество? А точнее - чем именно оно его заинтересовало? Как ни странно, своей совершенно парадоксальной судьбой на военном поприще. Все дело в том, что перекись водорода обладает целым набором качеств, которые, казалось бы, прочили ему блестящую военную карьеру. И с другой стороны, все эти качества оказались совершенно неприменимыми для использования ее в роли военного припаса. Ну, не то чтобы назвать его абсолютно непригодным - наоборот, она использовалась, и достаточно широко. Но с другой стороны, ничего экстраординарного из этих попыток не получилось: перекись водорода не может похвастаться таким внушительным послужным списком, как нитраты или углеводороды. Виной всему оказалась… Впрочем, не будем спешить. Давайте просто рассмотрим некоторые наиболее интересные и драматические моменты военной перекиси, а выводы каждый из читателей сделает самостоятельно. А поскольку каждая история имеет свое начало, то познакомимся с обстоятельствами рождения героя повествования.

Открытие профессора Тенара…

За окном стоял ясный морозный декабрьский день 1818 года. Группа студентов-химиков Парижской Политехнической школы торопливо заполняла аудиторию. Желающих пропустить лекцию знаменитого профессора школы и знаменитой Сорбонны (Парижского университета) Жана Луи Тенара не было: каждое его занятие было необычным и волнующим путешествием в мир удивительной науки. И вот, распахнув дверь, в аудиторию легкой пружинистой походкой (дань гасконским предкам) вошел профессор.

По привычке кивнув аудитории, он быстро подошел к длинному демонстрационному столу и сказал что-то препаратору старику Лешо. Затем, поднявшись на кафедру, обвел взглядом студентов и негромко начал:

Когда с передней мачты фрегата матрос кричит «Земля!», и капитан впервые видит в подзорную трубу неизвестный берег, это великий момент в жизни мореплавателя. Но разве не столь же велик момент, когда химик впервые обнаруживает на дне колбы частицы нового, доселе никому не известного вещества?

Тенар сошел с кафедры и подошел к демонстрационному столику, на который Лешо уже успел поставить несложный прибор.

Химия любит простоту, - продолжал Тенар. - Запомните это, господа. Здесь только два стеклянных сосуда, внешний и внутренний. Между ними снег: новое вещество предпочитает появляться при низкой температуре. Во внутренний сосуд налита разбавленная шестипроцентная серная кислота. Сейчас она почти такая же холодная, как и снег. Что же произойдет, если я брошу в кислоту щепотку окиси бария? Серная кислота и окись бария дадут безобидную воду и белый осадок - сернокислый барий. Это всем известно.

H2 SO4 + BaO = BaSO4 + H2 O


- Но теперь попрошу внимания! Мы приближаемся к неизвестным берегам, и сейчас с передней мачты раздастся крик «Земля!» Я бросаю в кислоту не окись, а перекись бария - вещество, которое получается при сжигании бария в избытке кислорода.

В аудитории было так тихо, что отчетливо слышалось тяжелое дыхание простуженного Лешо. Тенар, осторожно помешивая стеклянной палочкой кислоту, медленно, по крупинке, сыпал в сосуд перекись бария.

Осадок, обычный сернокислый барий, мы отфильтруем, - сказал профессор, сливая воду из внутреннего сосуда в колбу.

H2 SO4 + BaO2 = BaSO4 + H2 O2


- Это вещество похоже на воду, не так ли? Но это странная вода! Я бросаю в нее кусочек обыкновенной ржавчины (Лешо, лучину!), и смотрите, как вспыхивает едва тлеющий огонек. Вода, которая поддерживает горение!

Это особенная вода. В ней вдвое больше кислорода, чем в обычной. Вода - окись водорода, а эта жидкость - перекись водорода. Но мне нравится другое название - «окисленная вода». И по праву первооткрывателя я предпочитаю это имя.

Когда мореплаватель открывает неизвестную землю, он уже знает: когда-нибудь на ней вырастут города, будут проложены дороги. Мы, химики, никогда не можем быть уверены в судьбе своих открытий. Что ждет новое вещество через столетие? Быть может, такое же широкое применение, как у серной или соляной кислоты. А может быть, и полное забвение - за ненадобностью...

Аудитория зашумела.

Но Тенар продолжал:

И все-таки я уверен в великом будущем «окисленной воды», ведь она содержит большое количество «животворного воздуха» - кислорода. И что самое главное, он очень легко выделяется из такой воды. Уже одно это вселяет уверенность в будущем «окисленной воды». Земледелие и ремесла, медицина и мануфактура, и я даже не знаю еще, где найдет применение «окисленная вода»! То, что сегодня еще умещается в колбе, завтра может властно ворваться в каждый дом.

Профессор Тенар медленно сошел с кафедры.

Наивный парижский мечтатель… Убежденный гуманист, Тенар всегда считал, что наука должна приносить человечеству блага, облегчая жизнь и делая ее легче и счастливее. Даже постоянно имея перед глазами примеры прямо противоположного характера, он свято верил в большое и мирное будущее своего открытия. Иногда начинаешь верить в справедливость высказывания «Счастье - в неведении»…

Впрочем, начало карьеры перекиси водорода было вполне мирным. Она исправно трудилась на текстильных фабриках, отбеливая нитки и полотна; в лабораториях, окисляя органические молекулы и помогая получать новые, несуществующие в природе вещества; начала осваивать медицинские палаты, уверенно зарекомендовав себя в качестве местного антисептика.

Но вскоре выяснились и некоторые отрицательные стороны, одним из которых оказалась низкая устойчивость: существовать она могла только в растворах относительно небольшой концентрации. А как водится, раз концентрация не устраивает, ее надо повысить. И вот с этого и началось…

…и находка инженера Вальтера

1934 год в европейской истории оказался отмечен довольно многими событиями. Некоторые из них взбудоражили сотни тысяч людей, другие прошли тихо и незаметно. К первым, безусловно, можно отнести появление в Германии термина «арийская наука». Что касается второго, то это было внезапное исчезновение из открытой печати всех упоминаний о перекиси водорода. Причины этой странной пропажи стали ясны только после сокрушительного поражения «тысячелетнего Рейха».

Все началось с идеи, пришедшей в голову Гельмуту Вальтеру - владельцу небольшой фабрики в Киле по производству точных инструментов, научно-исследовательской аппаратуры и реактивов для немецких институтов. Человеком он был способным, эрудированным и, что немаловажно, предприимчивым. Он заметил, что концентрированная перекись водорода может довольно долго сохраняться в присутствии даже небольших количеств веществ-стабилизаторов, таких, например, как фосфорная кислота или ее соли. Особенно эффективным стабилизатором оказалась мочевая кислота: для стабилизации 30 л высококонцентрированной перекиси было достаточно 1 г мочевой кислоты. Но внесение других веществ, катализаторов разложения, приводит к бурному разложению вещества с выделением большого количества кислорода. Таким образом, обозначилась заманчивая перспектива регулирования процесса разложения с помощью довольно недорогих и простых химических веществ.

Само по себе все это было известно уже давно, но, кроме этого, Вальтер обратил внимание на другую сторону процесса. Реакция разложения перекиси

2 H2 O2 = 2 H2 O + O2


процесс экзотермический и сопровождается выделением довольно значительного количества энергии - около 197 кДж тепла. Это очень много, настолько много, что хватит довести до кипения в два с половиной раза больше воды, чем образуется при разложении перекиси. Неудивительно, что вся масса мгновенно превращалась в облако перегретого газа. А ведь это готовый парогаз - рабочее тело турбин. Если эту перегретую смесь направить на лопатки, то получим двигатель, который сможет работать где угодно, даже там, где хронически не хватает воздуха. Например, в подводной лодке…

Киль был форпостом германского подводного кораблестроения, и идея подводного двигателя на перекиси водорода захватила Вальтера. Она привлекала своей новизной, и к тому же инженер Вальтер был далеко не бессребреником. Он отлично понимал, что в условиях фашистской диктатуры кратчайший путь к благоденствию - работа на военные ведомства.

Уже в 1933 году Вальтер самостоятельно предпринял исследование энергетических возможностей растворов Н2 O2 . Он составил график зависимости основных теплофизических характеристик от концентрации раствора. И вот что выяснил.

Растворы, содержащие 40-65% Н2 O2 , разлагаясь, заметно нагреваются, но недостаточно для образования газа высокого давления. При разложении более концентрированных растворов тепла выделяется намного больше: вся вода испаряется без остатка, а остаточная энергия полностью тратится на нагрев парогаза. И что еще очень важно; каждой концентрации соответствовало строго определенное количество выделяющегося тепла. И строго определенное количество кислорода. И, наконец, третье - даже стабилизированная перекись водорода практически мгновенно разлагается под действием перманганатов калия KMnO4 или кальция Ca(MnO4 )2 .

Вальтер сумел увидеть абсолютно новую область применения вещества, известного больше ста лет. И изучил это вещество с точки зрения намеченного применения. Когда свои соображения он довел до высших военных кругов, поступило немедленное распоряжение: засекретить все, что так или иначе связано с перекисью водорода. Отныне в технической документации и переписке фигурировали "аурол", "оксилин", "топливо Т", но не общеизвестная перекись водорода.


Принципиальная схема парогазовой турбинной установки, работающей по «холодному» циклу: 1 - гребной винт; 2 - редуктор; 3 - турбина; 4 - сепаратор; 5 - камера разложения; 6 - регулирующий клапан; 7- электронасос раствора перекиси; 8 - эластичные емкости раствора перекиси; 9 - невозвратный клапан удаления за борт продуктов разложения перекиси.

В 1936 году Вальтер представил руководству подводного флота первую установку, которая работала на указанном принципе, который, не смотря на довольно высокую температуру, получил название «холодного». Компактная и легкая турбина развила на стенде мощность 4000 л.с., полностью оправдав ожидания конструктора.

Продукты реакции разложения высококонцентрированного раствора перекиси водорода подавались в турбину, вращавшую через понижающий редуктор гребной винт, а затем отводились за борт.

Несмотря на очевидную простоту такого решения, возникли попутные проблемы (а куда же без них-то!). Например, обнаружилось, что пыль, ржавчина, щелочи и другие примеси тоже являются катализаторами и резко (и что гораздо хуже - непредсказуемо) ускоряют разложение перекиси, чем создают опасность взрыва. Поэтому для хранения раствора перекиси применили эластичные емкости из синтетического материала. Такие емкости планировалось размещать вне прочного корпуса, что позволяло рационально использовать свободные объемы межкорпусного пространства и, кроме того, создавать подпор раствора перекиси перед насосом установки за счет давления забортной воды.

Но другая проблема оказалась значительно сложнее. Кислород, содержавшийся в отработанном газе, довольно плохо растворяется в воде, и предательски выдавал местоположение лодки, оставляя на поверхности след из пузырьков. И это при том, что «бесполезный» газ является жизненно необходимым веществом для корабля, призванного находиться на глубине как можно большее время.

Идея использования кислорода, как источника окисления топлива, была настолько очевидна, что Вальтер занялся параллельным проектированием двигателя, работавшего по «горячему циклу». В этом варианте в камеру разложения подавалось органическое топливо, которое сгорало в ранее неиспользовавшемся кислороде. Мощность установки резко возрастала и, кроме того, уменьшалась следность, так как продукт горения - углекислый газ - значительно лучше кислорода растворяется в воде.

Вальтер отдавал себе отчет в недостатках «холодного» процесса, но мирился с ними, так как понимал, что в конструктивном отношении такая энергетическая установка будет несоизмеримо проще, чем при «горячем» цикле, а значит, можно гораздо быстрее построить лодку и продемонстрировать ее достоинства.

В 1937 году Вальтер доложил результаты своих опытов руководству германских ВМС и заверил всех в возможности создания подводных лодок с парогазовыми турбинными установками с невиданной доселе скоростью подводного хода более 20 узлов. В результате совещания было принято решение о создании опытной подлодки. В процессе ее проектирования решались вопросы, связанные не только с применением необычной энергетической установки.

Так, проектная скорость подводного хода делала неприемлемыми ранее применявшиеся обводы корпуса. Здесь морякам помогли авиастроители: несколько моделей корпуса испытали в аэродинамической трубе. Кроме того, для улучшения управляемости применили сдвоенные рули по образцу рулей самолета «Юнкерс-52».

В 1938 году в Киле заложили первую в мире опытную подводную лодку с энергетической установкой на перекиси водорода водоизмещением 80 т, получившую обозначение V-80. Проведенные в 1940 году испытания буквально ошеломили - относительно простая и легкая турбина мощностью 2000 л.с. позволила подлодке развить под водой скорость 28,1 узла! Правда, расплачиваться за такую невиданную скорость пришлось ничтожной дальностью плавания: запасов перекиси водорода хватало на полтора-два часа.

Для Германии во время Второй мировой войны подводные лодки были стратегическим, так как только с их помощью можно было нанести ощутимый урон экономике Англии. Поэтому уже в 1941 году начинается разработка, а затем постройка подводной лодки V-300 с парогазовой турбиной, работающей по «горячему» циклу.


Принципиальная схема парогазовой турбинной установки, работающей по «горячему» циклу: 1 - гребной винт; 2 - редуктор; 3 - турбина; 4 - гребной электродвигатель; 5 - сепаратор; 6 - камера горения; 7 - запальное устройство; 8 - клапан растопочного трубопровода; 9 - камера разложения; 10 - клапан включения форсунок; 11 - трехкомпонентный переключатель; 12 - четырехкомпонентный регулятор; 13 - насос раствора перекиси водорода; 14 - топливный насос; 15 - водяной насос; 16 - охладитель конденсата; 17 - конденсатный насос; 18 - конденсатор смешения; 19 - газосборник; 20 - углекислотный компрессор

Лодка V-300 (или U-791 - такое литерно-цифровое обозначение она получила) имела две двигательные установки (точнее, три): газовую турбину Вальтера, дизеля и электромоторы. Такой необычный гибрид появился как результат понимания того, что турбина, по сути, является форсажным двигателем. Высокий расход компонентов топлива делал ее просто неэкономичной для совершения длительных «холостых» переходов или тихого «подкрадывания» к судам противника. Но она была просто незаменима для быстрого ухода с позиции атаки, смены места атаки или других ситуаций, когда «пахло жаренным».

U-791 так и не достроили, а сразу заложили четыре опытно-боевые подводные лодки двух серий - Wa-201 (Wa - Вальтер) и Wk-202 (Wk - Вальтер-Крупп) различных судостроительных фирм. По своим энергетическим установкам они были идентичны, но отличались кормовым оперением и некоторыми элементами обводов рубки и корпуса. С 1943 г. начались их испытания, которые проходили тяжело, но к концу 1944г. все основные технические проблемы были позади. В частности, U-792 (серия Wa-201) прошла испытания на полную дальность плавания, когда, имея запас перекиси водорода 40 т, она почти четыре с половиной часа шла под форсажной турбиной и четыре часа поддерживала скорость 19,5 узла.

Эти цифры настолько поразили руководство Кригсмарине, что не дожидаясь окончания испытаний опытных подлодок, в январе 1943 г. промышленности выдается заказ на постройку сразу 12 кораблей двух серий - XVIIB и XVIIG. При водоизмещении 236/259 т они имели дизель-электрическую установку мощностью 210/77 л.с., позволявшую двигаться со скоростью 9/5 узлов. В случае боевой необходимости включались две ПГТУ общей мощностью 5000 л.с., которые позволяли развить скорость подводного хода в 26 узлов.


На рисунке условно, схематично, без соблюдения масштабов показано устройство подводной лодки с ПГТУ (из двух таких установок изображена одна). Некоторые обозначения: 5 - камера сгорания; 6 - запальное устройство; 11 - камера разложения перекиси; 16 - трехкомпонентный насос; 17 - топливный насос; 18 - водяной насос (по материалам http://technicamolodezhi.ru/rubriki_tm/korabli_vmf_velikoy_otechestvennoy_voynyi_1972/v_nadejde_na_totalnuyu_voynu)

Вкратце работа ПГТУ выглядит таким образом . С помощью насоса тройного действия осуществлялась подача дизельного топлива, перекиси водорода и чистой воды через 4-позиционный регулятор подачи смеси в камеру сгорания; при работе насоса на 24000 об./мин. подача смеси достигала следующих объемов: топливо - 1,845 куб.м/час, перекись водорода - 9,5 куб.м/час, вода - 15,85 куб.м/час. Дозирование трех указанных компонентов смеси производилось с помощью 4-позиционного регулятора подачи смеси в весовом соотношении 1:9:10, который также регулировал и 4-й компонент - морскую воду, компенсирующую различие веса перекиси водорода и воды в регулирующих камерах. Регулирующие элементы 4-позиционного регулятора приводились в действие электродвигателем мощностью 0,5 л.с. и обеспечивали требуемый расход смеси.

После 4-позиционного регулятора перекись водорода поступала в камеру каталитического разложения через отверстия в крышке этого устройства; на сите которого находился катализатор - керамические кубики или трубчатые гранулы длиной около 1 см, пропитанные раствором перманганата кальция. Парогаз нагревался до температуры 485 градусов по Цельсию; 1 кг элементов катализатора пропускал до 720 кг перекиси водорода в час при давлении 30 атмосфер.

После камеры разложения он поступал в камеру сгорания высокого давления, изготовленную из прочной закаленной стали. Входными каналами служили шесть форсунок, боковые отверстия которых служили для прохода парогаза, а центральное - для топлива. Температура в верхней части камеры достигала 2000 градусов по Цельсию, а в нижней части камеры снижалась до 550-600 градусов за счет впрыскивания в камеру сгорания чистой воды. Полученные газы подавались на турбину, после которой отработанная парогазовая смесь поступала в конденсатор, установленный на корпусе турбины. С помощью системы водяного охлаждения температура смеси на выходе опускалась до 95 градусов по Цельсию, конденсат собирался в резервуаре для конденсата и с помощью насоса для отбора конденсата поступал в холодильники морской воды, использующих для охлаждения проточную морскую воду при движении лодки в подводном положении. В результате прохождения по холодильникам температура полученной воды снижалась с 95 до 35 градусов по Цельсию, и она возвращалась по трубопроводу как чистая вода для камеры сгорания. Остатки парогазовой смеси в виде углекислого газа и пара под давлением 6 атмосфер отбирались из резервуара для конденсата газовым сепаратором и удалялись за борт. Углекислый газ относительно быстро растворялся в морской воде, не оставляя заметного следа на поверхности воды.

Как видно, даже в таком популярном изложении ПГТУ не выглядит простым устройством, что требовало привлечения для ее строительства высококвалифицированных инженеров и рабочих. Строительство подводных лодок с ПГТУ велось в обстановке абсолютной секретности. На корабли допускали строго ограниченный круг лиц по спискам, согласованным в высших инстанциях вермахта. На контрольно-пропускных пунктах стояли жандармы, переодетые в форму пожарных... Параллельно наращивались производственные мощности. Если в 1939 году Германия производила 6800 тонн перекиси водорода (в пересчете на 80%-ный раствор), то в 1944 - уже 24 000 тонн, и строились дополнительные мощности на 90000 тонн в год.

Еще не имея полноценных боевых подводных лодок с ПГТУ, не имея опыта их боевого использования, гросс-адмирал Дениц вещал:

Придет день, когда я объявлю Черчиллю новую подводную войну. Подводный флот не был сломлен ударами 1943 года. Он стал сильнее, чем прежде. 1944 год будет тяжелым годом, но годом, который принесет большие успехи.


Деницу вторил государственный радиокомментатор Фриче. Он был еще откровеннее, обещая нации «тотальную подводную войну с участием совершенно новых подводных лодок, против которых противник будет беспомощен».

Интересно, вспоминал ли Карл Дениц эти свои громкие обещания в течении тех 10 лет, которые ему пришлось коротать в тюрьме Шпандау по приговору Нюренбергского трибунала?

Финал этих многообещающих субмарин оказался плачевным: за все время было построено только 5 (по другим данным - 11) лодок с ПГТУ Вальтера, из которых только три прошли испытания и были зачислены в боевой состав флота. Не имеющие экипажа, не совершившие ни одного боевого выхода, они были затоплены после капитуляции Германии. Две из них, затопленные на мелководном участке в британской зоне оккупации, позднее были подняты и переправлены: U-1406 в США, а U-1407 в Великобританию. Там специалисты тщательно изучили эти подлодки, а британцы даже провели натурные испытания.

Нацистское наследие в Англии…

Переправленные в Англию лодки Вальтера не пошли на металлолом. Наоборот, горький опыт обеих прошедших мировых войн на море вселил в британцев убежденность в безусловном приоритете противолодочных сил. В числе прочих Адмиралтейством рассматривался вопрос создания специальной противолодочной ПЛ. Предполагалось развертывание их на подходах к базам противника, где они должны были атаковать выходящие в море подлодки врага. Но для этого сами противолодочные подлодки должны были обладать двумя важными качествами: способностью длительное время скрытно находиться под носом у противника и хотя бы кратковременно развивать большие скорости хода для быстрого сближения с противником и внезапной его атаки. И немцы представили им неплохой задел: РПД и газовая турбина. Наибольшее внимание было сосредоточено на ПГТУ, как полностью автономной системе, которая, к тому же, обеспечивала поистине фантастические для того времени подводные скорости.

Немецкая U-1407 была эскортирована в Англию немецким же экипажем, который предупредили о смертной каре в случае каких-либо диверсий. Туда же доставили Гельмута Вальтера. Восстановленная U-1407 была зачислена в состав ВМС под именем «Метеорит». Прослужила она до 1949 г, после чего была выведена из состава флота и в 1950 разобрана на металл.

Позднее, в 1954-55 гг. англичане построили две однотипные опытовые ПЛ «Эксплорер» и «Экскалибур» собственной конструкции. Впрочем, изменения касались только внешнего облика и внутренней компоновки, что же касается ПГТУ, то она осталась практически в первозданном виде.

Обе лодки так и не стали прародителями чего-то нового в английском флоте. Единственное достижение - полученные на испытаниях «Эксплорера» 25 узлов подводного хода, что дало англичанам повод раструбит на весь мир о своем приоритете на этот мировой рекорд. Цена же этого рекорда тоже была рекордной: постоянные отказы, проблемы, пожары, взрывы приводили к тому, что большую часть времени они проводили в доках и мастерских в ремонте, чем в походах и испытаниях. И это не считая чисто финансовой стороны: один ходовой час «Эксплорера» обходился в 5000 фунтов стерлингов, что по курсу того времени равно 12,5 кг золота. Исключены они были из состава флота в 1962 («Эксплорер») и в 1965 («Экскалибур») годах с убийственной характеристикой одного из британских подводников: «Лучшее, что можно сделать с перекисью водорода - это заинтересовать ею потенциальных противников!»

…и в СССР]
Советскому Союзу, в отличие от союзников, лодки серии XXVI не достались, как не досталась и техническая документация по этим разработкам: «союзнички» остались верными себе, в который раз скрысятничав лакомый кусочек. Но информация, и довольно обширная, об этих неудавшихся новинках Гитлера в СССР имелась. Поскольку русские и советские химики всегда шли в авангарде мировой химической науки, решение об исследовании возможностей столь интересного двигателя на чисто химической основе было принято быстро. Органам разведки удалось найти и собрать группу немецких специалистов, ранее работавших в этой области и выразивших желание продолжить их на бывшего противника. В частности, такое желание высказал один из заместителей Гельмута Вальтера некий Франц Статецки. Статецки и группа «технической разведки» по вывозу из Германии военных технологий под руководством адмирала Л.А. Коршунова, нашли в Германии фирму «Брюнер-Канис-Рейдер», которая была смежником в изготовлении турбинных установок Вальтера.

Для копирования немецкой подводной лодки с силовой установкой Вальтера сначала в Германии, а затем в СССР под руководством А.А. Антипина было создано «бюро Антипина», организация, из которой стараниями главного конструктора подводных лодок (капитана I ранга А.А. Антипина) образовались ЛПМБ «Рубин» и СПМБ «Малахит».

Задачей бюро было изучение и воспроизводство достижений немцев по новым подводным лодкам (дизельным, электрическим, парогазотурбинным), но основной задачей было повторение скоростей немецких подводных лодок с циклом Вальтера.

В результате проведённых работ удалось полностью восстановить документацию, изготовить (частично из немецких, частично из вновь изготовленных узлов) и испытать парогазотурбинную установку немецких лодок серии XXVI.

После этого было решено строить советскую подлодку с двигателем Вальтера. Тема разработки подлодок с ПГТУ Вальтера получила название проект 617.

Александр Тыклин, описывая биографию Антипина, писал:

«…Это была первая подводная лодка СССР, перешагнувшая 18-узловую величину подводной скорости: в течение 6 часов её подводная скорость составляла более 20 узлов! Корпус обеспечивал увеличение глубины погружения вдвое, то есть до глубины 200 метров. Но главным достоинством новой подводной лодки была её энергетическая установка, явившаяся удивительным по тем временам новшеством. И не случайно было посещение этой лодки академиками И.В. Курчатовым и А.П. Александровым - готовясь к созданию атомных подводных лодок, они не могли не познакомиться с первой в СССР подводной лодкой, имевшей турбинную установку. Впоследствии, многие конструктивные решения были заимствованы при разработке атомных энергетических установок…»



При проектировании С-99 (такой номер получила эта лодка) был учтен и советский, и иностранный опыт создания единых двигателей. Предэскизный проект закончили в конце 1947 года. Лодка имела 6 отсеков, турбина находилась в герметичном и необитаемом 5-м отсеке, пульт управления ПГТУ, дизель-генератор и вспомогательные механизмы смонтировали в 4-м, который имел и специальные окна для наблюдения за турбиной. Горючее составляло 103 т перекиси водорода, дизтоплива - 88,5 т и специального топлива для турбины - 13,9 т. Все компоненты находились в специальных мешках и цистернах вне прочного корпуса. Новинкой в отличие от германских и английских разработок было применение в качестве катализатора не перманганата калия (кальция), а оксида марганца MnO2. Будучи твердым веществом, он легко наносился на решетки и сетки, не терялся в процессе работы, занимал значительно меньше места, чем растворы и не разлагался со временем. В всем остальном ПГТУ была копией вальтеровского двигателя.

С-99 считалась опытовой с самого начала. На ней отрабатывалось решение вопросов, связанных с большой подводной скоростью: форма корпуса, управляемость, устойчивость движения. Данные, накопленные при ее эксплуатации, позволили рационально проектировать атомоходы первого поколения.

В 1956 ‒ 1958 годах были спроектированы большие лодки проект 643 с надводным водоизмещением в 1865 т и уже с двумя ПГТУ, которые должны были обеспечить лодке подводную скорость в 22 узла. Однако в связи с созданием эскизного проекта первых советских подлодок с атомными силовыми установками проект был закрыт. Но исследования ПГТУ лодки С-99 не прекратились, а были переведены в русло рассмотрения возможности применения двигателя Вальтера в разрабатываемой гигантской торпеде Т-15 с атомным зарядом, предложенной Сахаровым для уничтожения военно-морских баз и портов США. Т-15 должна была иметь длину в 24 м, дальность подводного хода до 40-50 миль, и нести термоядерную боеголовку, способную вызывать искусственное цунами для уничтожения прибрежных городов США. К счастью, и от этого проекта тоже отказались.

Опасность перекиси водорода не преминула сказаться и в советском ВМФ. 17 мая 1959 года на ней произошла авария - взрыв в машинном отделении. Лодка чудом не погибла, но ее восстановление посчитали нецелесообразным. Лодку сдали на металлолом.

В дальнейшем ПГТУ не получили распространения в подводном кораблестроении ни в СССР, ни за рубежом. Успехи атомной энергетики позволили более удачно решить проблему мощных подводных двигателей, не требующих кислорода.

Продолжение следует…

Ctrl Enter

Заметили ошЫ бку Выделите текст и нажмите Ctrl+Enter

Торпедные двигатели: вчера и сегодня

ОАО «НИИ мортеплотехники» осталось единственным предприятием в Российской Федерации, осуществляющим полномасштабную разработку тепловых энергоустановок

В период от основания предприятия и до середины 1960-х гг. главное внимание уделялось разработке турбинных двигателей для противокорабельных торпед с рабочим диапазоном работы турбин на глубинах 5-20 м. Противолодочные торпеды проектировались тогда только на электроэнергетике. В связи с условиями применения противокорабельных торпед важными требованиями к энергосиловым установкам были максимально возможная мощность и визуальная незаметность. Требование по визуальной незаметности легко выполнялось за счет применения двухкомпонентного топлива: керосина и маловодного раствора перекиси водорода (МПВ) концентрации 84%. В продуктах сгорания содержался водяной пар и двуокись углерода. Выхлоп продуктов сгорания за борт осуществлялся на расстоянии 1000-1500 мм от органов управления торпедой, при этом пар конденсировался, а двуокись углерода быстро растворялась в воде так, что газообразные продукты сгорания не только не достигали поверхности воды, но и не оказывали влияния на рули и гребные винты торпеды.

Максимальная мощность турбины, достигнутая на торпеде 53-65, составила 1070 кВт и обеспечивала движение со скоростью около 70 узлов. Это была самая скоростная торпеда в мире. Для снижения температуры продуктов сгорания топлива с 2700-2900 К до приемлемого уровня в продукты сгорания впрыскивалась морская вода. На начальной стадии работ соли из морской воды осаждались в проточной части турбины и приводили к ее разрушению. Это происходило до тех пор, пока не были найдены условия безаварийной работы, минимизирующие влияние солей морской воды на работоспособность газотурбинного двигателя.

При всех энергетических преимуществах перексида водорода как окислителя, его повышенная пожаровзрывоопасность при эксплуатации диктовала поиск применения альтернативных окислителей. Одним из вариантов подобных технических решений была замена МПВ на газообразный кислород. Турбинный двигатель, разработанный на нашем предприятии, сохранился, а торпеда, получившая обозначение 53-65К, успешно эксплуатировалась и не снята с вооружения ВМФ до сих пор. Отказ от применения МПВ в торпедных тепловых энергосиловых установках привел к необходимости проведения многочисленных научно-исследовательских работ по поиску новых топлив. В связи с появлением в середине 1960-х гг. атомных подводных лодок, имеющих высокие скорости подводного движения, противолодочные торпеды с электроэнергетикой оказались малоэффективными. Поэтому наряду с поиском новых топлив исследовались новые типы двигателей и термодинамические циклы. Наибольшее внимание было уделено созданию паротурбинной установки, работающей в замкнутом цикле Ренкина. На этапах предварительной как стендовой, так и морской отработки таких агрегатов, как турбина, парогенератор, конденсатор, насосы, клапана и всей системы в целом использовалось топливо: керосин и МПВ, а в основном варианте – твердое гидрореагирующее топливо, обладающее высокими энергетическими и эксплуатационными показателями.

Паротурбинная установка была успешно отработана, но работы по торпеде были остановлены.

В 1970-1980-х гг. большое внимание уделялось разработке газотурбинных установок открытого цикла, а также комбинированного цикла с применением в системе газовыхлопа эжектора на больших глубинах работы. В качестве топлива использовались многочисленные рецептуры жидкого монотоплива типа Otto-Fuel II, в том числе с добавками металлического горючего, а также с применением жидкого окислителя на основе гидроксил аммония перхлорат (НАР).

Практический выход получило направление создания газотурбинной установки открытого цикла на топливе типа Otto-Fuel II. Был создан турбинный двигатель мощностью более 1000 кВт для ударной торпеды калибра 650 мм.

В середине 1980-х гг. по результатам проведенных исследовательских работ руководством нашего предприятия было принято решение о развитии нового направления – разработки для универсальных торпед калибра 533 мм аксиально-поршневых двигателей на топливе типа Otto-Fuel II. Поршневые двигатели по сравнению с турбинными обладают более слабой зависимостью экономичности от глубины хода торпеды.

С 1986-го по 1991 гг. был создан аксиально-поршневой двигатель (модель 1) мощностью около 600 кВт для универсальной торпеды калибра 533 мм. Он успешно прошел все виды стендовых и морских испытаний. В конце 1990-х годов в связи с уменьшением длины торпеды была создана вторая модель этого двигателя путем модернизации в части упрощения конструкции, повышении надежности, исключения дефицитных материалов и внедрения многорежимности. Эта модель двигателя принята в серийной конструкции универсальной глубоководной самонаводящейся торпеды.

В 2002 г. ОАО «НИИ мортеплотехники» было поручено создание энергосиловой установки для новой легкой противолодочной торпеды калибра 324 мм. После анализа всевозможных типов двигателей, термодинамических циклов и топлив выбор был сделан также, как и для тяжелой торпеды, в пользу аксиально-поршневого двигателя открытого цикла на топливе типа Otto-Fuel II.

Однако при проектировании двигателя был учтен опыт слабых сторон конструкции двигателя тяжелой торпеды. Новый двигатель имеет принципиально другую кинематическую схему. В нем отсутствуют элементы трения в топливоподающем тракте камеры сгорания, что исключило возможность взрыва топлива в процессе работы. Вращающиеся части хорошо сбалансированы, а приводы вспомогательных агрегатов значительно упрощены, что привело к снижению виброактивности. Внедрена электронная система плавного регулирования расхода топлива и соответственно мощности двигателя. Практически отсутствуют регуляторы и трубопроводы. При мощности двигателя 110 кВт во всем диапазоне требуемых глубин, на малых глубинах он допускает удвоение мощности при сохранении работоспособности. Широкий диапазон параметров работы двигателя позволяет использовать его в торпедах, антиторпедах, самодвижущихся минах, средствах гидроакустического противодействия, а также в автономных подводных аппаратах военного и гражданского назначения.

Все эти достижения в области создания торпедных энергосиловых установок были возможны в связи с наличием в ОАО «НИИ мортеплотехники» уникальных экспериментальных комплексов, созданных как собственными силами, так и за счет государственных средств. Комплексы располагаются на территории около 100 тыс.м2. Они обеспечены всеми необходимыми системами энергоснабжения, в том числе системами воздуха, воды, азота и топлив высокого давления. В испытательные комплексы входят системы утилизации твердых, жидких и газообразных продуктов сгорания. В комплексах имеются стенды для испытаний макетных и полномасштабных турбинных и поршневых двигателей, а также двигателей других типов. Имеются, кроме того, стенды для испытаний топлив, камер сгорания, различных насосов и приборов. Стенды оснащены электронными системами управления, измерения и регистрации параметров, визуального наблюдения испытуемых объектов, а также аварийной сигнализацией и защитой оборудования.

Перекись водорода H2O2 - прозрачная бесцветная жидкость, заметно более вязкая, чем вода, с характерным, хотя и слабым запахом. Безводную перекись водорода трудно получить и хранить, и она является слишком дорогой для использования в качестве ракетного топлива. Вообще, дороговизна - один из главных недостатков перекиси водорода. Зато, по сравнению с другими окислителями, она более удобна и менее опасна в обращении.
Склонность перекиси к самопроизвольному разложению традиционно преувеличивается. Хотя мы и наблюдали снижение концентрации с 90% до 65% за два года хранения в литровых полиэтиленовых бутылках при комнатной температуре, но в больших объёмах и в более подходящей таре (например, в 200-литровой бочке из достаточно чистого алюминия) скорость разложения 90%-й перекиси составила бы менее 0,1% в год.
Плотность безводной перекиси водорода превышает 1450 кг/м3, что значительно больше, чем у жидкого кислорода, и немногим меньше, чем у азотнокислых окислителей. К сожалению, примеси воды быстро уменьшают её, так что 90%-й раствор имеет плотность 1380 кг/м3 при комнатной температуре, но это всё ещё очень неплохой показатель.
Перекись в ЖРД может применяться и как унитарное топливо, и как окислитель - например, в паре с керосином или спиртом. Ни керосин, ни спирт не самовоспламеняются с перекисью, и для обеспечения зажигания в горючее приходится добавлять катализатор разложения перекиси - тогда выделяющегося тепла достаточно для воспламенения. Для спирта подходящим катализатором является ацетат марганца (II). Для керосина тоже существуют соответствующие добавки, но их состав держится в секрете.
Применение перекиси как унитарного топлива ограничено её сравнительно низкими энергетическими характеристиками. Так, достигаемый удельный импульс в вакууме для 85%-й перекиси составляет лишь порядка 1300…1500 м/с (для разных степеней расширения), а для 98%-й - примерно 1600…1800 м/с. Тем не менее, перекись была применена сначала американцами для ориентации спускаемого аппарата космического корабля «Меркурий», затем, с той же целью, советскими конструкторами на СА КК «Союз». Кроме того перекись водорода используется как вспомогательное топливо для привода ТНА - впервые на ракете V-2, а затем на её «потомках», вплоть до Р-7. Все модификации «семёрок», включая самые современные, по-прежнему используют перекись для привода ТНА.
В качестве окислителя перекись водорода эффективна с различными горючими. Хотя она и даёт меньший удельный импульс, нежели чем жидкий кислород, но при применении перекиси высокой концентрации значения УИ превышают таковые для азотнокислотных окислителей с теми же горючими. Из всех ракет-носителей космического назначения лишь одна использовала перекись (в паре с керосином) - английская «Black Arrow». Параметры её двигателей были скромны - УИ двигателей I ступени немногим превышал 2200 м/с у земли и 2500 м/с в вакууме, - так как в этой ракете использовалась перекись всего лишь 85% концентрации. Сделано это было из-за того, что для обеспечения самовоспламенения перекись разлагалась на серебряном катализаторе. Более концентрированная перекись расплавила бы серебро.
Несмотря на то, что интерес к перекиси время от времени активизируется, перспективы её остаются туманными. Так, хотя советский ЖРД РД-502 (топливная пара - перекись плюс пентаборан) и продемонстрировал удельный импульс 3680 м/с, он так и остался экспериментальным.
В наших проектах мы ориентируемся на перекись ещё и потому, что двигатели на ней оказываются более «холодными», чем аналогичные двигатели с таким же УИ, но на других топливах. Например, продукты сгорания «карамельного» топлива имеют почти на 800° большую температуру при том же достигаемом УИ. Это связано с большим количеством воды в продуктах реакции перекиси и, как следствие, с низкой средней молекулярной массой продуктов реакции.

Несомненно, двигатель - самая важная часть ракеты и одна из самых сложных. Задача двигателя - смешивать компоненты топлива, обеспечивать их сгорание и с большой скоростью выбрасывать получающиеся в процессе горения газы в заданном направлении, создавая реактивную тягу. В этой статье мы рассмотрим только используемые сейчас в ракетной технике химические двигатели. Существует несколько их видов: твердотопливные, жидкостные, гибридные и жидкостные однокомпонентные.


Любой ракетный двигатель состоит из двух основных частей: камера сгорания и сопло. С камерой сгорания, думаю, все понятно - это некий замкнутый объем, в котором происходит горение топлива. А сопло предназначено для разгона получающихся в процессе горения топлива газов до сверхзвуковой скорости в одном заданном направлении. Сопло состоит из конфузора, канала критики и диффузора.

Конфузор - это воронка, которая собирает газы из камеры сгорания и направляет их в канал критики.

Критика - самая узкая часть сопла. В ней газ разгоняется до скорости звука за счет высокого давления со стороны конфузора.

Диффузор - расширяющаяся часть сопла после критики. В ней происходит падение давления и температуры газа, за счет чего газ получает дополнительный разгон до сверхзвуковой скорости.

А теперь пройдемся по всем основным типам двигателей.

Начнем с простого. Самым простым по своей конструкции является РДТТ - ракетный двигатель на твердом топливе. Фактически это бочка, загруженная твердой топливно-окислительной смесью, имеющая сопло.

Камерой сгорания в таком двигателе является канал в топливном заряде, а горение происходит по всей площади поверхности этого канала. Нередко для упрощения заправки двигателя заряд делают составным из топливных шашек. Тогда горение происходит также и на поверхности торцов шашек.

Для получения разной зависимости тяги от времени применяют разные поперечные сечения канала:

РДТТ - самый древний вид ракетного двигателя. Его придумали еще в древнем Китае, но по сей день он находит применение как в боевых ракетах, так и в космической технике. Также этот двигатель ввиду своей простоты активно используется в любительском ракетостроении.

Первый американский космический корабль Меркурий был оборудован шестью РДТТ:

Три маленьких отводят корабль от ракеты-носителя после отделения от нее, а три больших - тормозят его для схода с орбиты.

Самый мощный РДТТ (и вообще самый мощный ракетный двигатель в истории) - это боковой ускоритель системы Спейс шаттл, развивавший максимальную тягу 1400 тонн. Именно два этих ускорителя давали столь эффектный столб огня при старте челноков. Это хорошо видно, например, на видеозаписи старта челнока Атлантис 11 мая 2009 года (миссия STS-125):

Эти же ускорители будут использованы в новой ракете SLS, которая будет выводить на орбиту новый американский корабль Орион. Сейчас можно увидеть записи с наземных испытаний ускорителя:

Также РДТТ установлены в системах аварийного спасения, предназначенных для увода космического корабля от ракеты в случае аварии. Вот, например, испытания САС корабля Меркурий 9 мая 1960 года:

На космических кораблях Союз кроме САС установлены двигатели мягкой посадки. Это тоже РДТТ, которые работают доли секунды, выдавая мощный импульс, гасящий скорость снижения корабля почти до нуля перед самым касанием поверхности Земли. Срабатывание этих двигателей видно на записи посадки корабля Союз ТМА-11М 14 мая 2014 года:

Главным недостатком РДТТ является невозможность управления тягой и невозможность повторного запуска двигателя после его останова. Да и останов двигателя в случае с РДТТ по факту остановом не является: двигатель либо прекращает работу по причине окончания топлива либо, в случае необходимости остановить его раньше, производится отсечка тяги: специальным пиропатроном отстреливается верхняя крышка двигателя и газы начинают выходить с обоих его торцов, обнуляя тягу.

Следующим мы рассмотрим гибридный двигатель . Его особенность в том, что используемые компоненты топлива находятся в разных агрегатных состояниях. Чаще всего используется твердое горючее и жидкий или газообразный окислитель.

Вот, как выглядит стендовое испытание такого двигателя:

Именно такой тип двигателя применен на первом частном космическом челноке SpaceShipOne.
В отличие от РДТТ ГРД можно повторно запускать и регулировать его тягу. Однако, не обошлось и без недостатков. Из-за большой камеры сгорания ГРД невыгодно ставить на большие ракеты. Также ГРД склонен к «жёсткому старту», когда в камере сгорания накопилось много окислителя, и при зажигании двигатель даёт за короткое время большой импульс тяги.

Ну а теперь рассмотрим самый широко применяемый в космонавтике тип ракетных двигателей. Это ЖРД - жидкостные ракетные двигатели.

В камере сгорания ЖРД смешиваются и сгорают две жидкости: горючее и окислитель. В космических ракетах применяются три топливно-окислительные пары: жидкий кислород + керосин (ракеты Союз), жидкий водород + жидкий кислород (вторая и третья ступени ракеты Сатурн-5, вторая ступень Чанчжэн-2, Спейс шаттл) и несимметричный диметилгидразин + тетраоксид азота (ракеты Протон и первая ступень Чанчжэн-2). Сейчас также проводятся испытания нового вида топлива - жидкого метана.

Преимуществами ЖРД являются малый вес, возможность регулирования тяги в широких пределах (дросселирование), возможность многократных запусков и больший удельный импульс по сравнению с двигателями других типов.

Главным недостатком таких двигателей является умопомрачительная сложность конструкции. Это у меня на схеме все просто выглядит, а на самом деле при конструировании ЖРД приходится сталкиваться с целым рядом проблем: необходимость хорошего перемешивания компонентов топлива, сложность поддержания высокого давления в камере сгорания, неравномерность горения топлива, сильный нагрев стенок камеры сгорания и сопла, сложности с зажиганием, коррозионное воздействие окислителя на стенки камеры сгорания.

Для решения всех этих проблем применяется множество сложных и не очень инженерных решений, отчего ЖРД зачастую выглядит как кошмарный сон пьяного сантехника, например, этот РД-108:

Камеры сгорания и сопла хорошо видны, но обратите внимание, сколько там всяких трубок, агрегатов и проводов! И все это нужно для стабильной и надежной работы двигателя. Там есть турбонасосный агрегат для подачи топлива и окислителя в камеры сгорания, газогенератор для привода турбонасосного агрегата, рубашки охлаждения камер сгорания и сопел, кольцевые трубки на соплах для создания охлаждающей завесы из топлива, патрубок для сброса отработанного генераторного газа и дренажные трубки.

Более подробно работу ЖРД мы рассмотрим в одной из следующих статей, а пока переходим к последнему типу двигателей: однокомпонентному .

Работа такого двигателя основана на каталитическом разложении пероксида водорода. Наверняка многие из вас помнят школьный опыт:

В школе используется аптечная трехпроцентная перекись, а вот реакция с использованием 37% перекиси:

Видно, как из горлышка колбы с силой вырывается струя пара (в смеси с кислородом, разумеется). Чем не реактивный двигатель?

Двигатели на перекиси водорода используют в системах ориентации космических аппаратов, когда большое значение тяги не нужно, а простота конструкции двигателя и его малая масса очень важны. Разумеется, используемая концентрация перекиси водорода далеко не 3% и даже не 30%. Стопроцентная концентрированная перекись дает в ходе реакции смесь кислорода с водяным паром, нагретую до полутора тысяч градусов, что создает высокое давление в камере сгорания и высокую скорость истечения газа из сопла.

Простота конструкции однокомпонентного двигателя не могла не привлечь к себе внимание ракетчиков-любителей. Вот пример любительского однокомпонентного двигателя.

1 .. 42 > .. >> Следующая
Низкая температура застывания спирта позволяет использовать его в широком диапазоне температур окружающей среды.
Спирт производится в очень больших количествах и не является дефицитным горючим. На конструкционные материалы спирт не оказывает агрессивного воздействия. Это позволяет применять для спиртовых баков и магистралей сравнительно дешевые материалы.
Заменителем этилового спирта может служить метиловый спирт, дающий с кислородом топливо несколько худшего качества. Метиловый спирт смешивается с этиловым в любых пропорциях, что позволяет использовать его при недостатке этилового спирта и добавлять в некоторой доле в горючее. Топливо на основе жидкого кислорода применяется почти исключительно в ракетах дальнего действия, допускающих и даже, вследствие большого веса, требующих заправки ракеты компонентами на месте старта.
Перекись водорода
Перекись водорода H2O2 в чистом виде (т. е. 100%-ной концентрации) в технике не применяется, так как является чрезвычайно нестойким продуктом, способным к самопроизвольному разложению, легко переходящему во взрыв под влиянием всяких, казалось бы, незначительных внешних воздействий: удара, освещения, малейшего загрязнения органическими веществами и примесями некоторых металлов.
В ракетной технике"применяются более стойкие высококонцен-трпрованные (чаще всего 80"%-ной концентрации) растворы перекц си водорода в воде. Для повышения стойкости к перекиси водорода прибавляют небольшие количества веществ, препятствующих ее самопроизвольному разложению (например, фосфорной кислоты). Применение 80"%-ной перекиси водорода требует в настоящее время принятия лишь обычных мер предосторожности, необходимых при обращении с сильными окислителями. Перекись водорода такой концентрации является прозрачной, слегка голубоватой жидкостью с температурой замерзания -25° С.
Перекись водорода при разложении ее на кислород и водяные пары выделяет тепло. Это выделение тепла объясняется тем, что теплота образования перекиси составляет - 45,20 ккал/г-моль, в то
126
Гл. IV. Топлива ракетных двигателей
время как теплота образования воды равняется-68,35 ккал/г-моль. Таким образом, при разложении перекиси по формуле H2O2 = --H2O+V2O0 выделяется химическая энергия, равная разности 68,35-45,20=23,15 ккал/г-моль, или 680 ккал/кг.
Перекись водорода 80э/о-ной концентрации обладает способностью к разложению в присутствии катализаторов с выделением тепла в количестве 540 ккал/кг и с выделением свободного кислорода, который может быть использован для окисления горючего. Перекись водорода обладает значительным удельным весом (1,36 кг/л для 80%-ной концентрации). Использовать перекись водорода как охладитель нельзя, так как при нагревании она не закипает, а сразу разлагается.
В качестве материалов для баков и трубопроводов двигателей, работающих на перекиси, могут служить нержавеющая сталь и очень чистый (с содержанием примесей до 0,51%) алюминий. Совершенно недопустимо применение меди и других тяжелых металлов. Медь является сильным катализатором, способствующим разложению перекиои водорода. Для прокладок и уплотнений могут применяться некоторые виды пластмасс. Попадание концентрированной перекиси водорода на кожу вызывает тяжелые ожоги. Органические вещества при попадании на них перекиси водорода загораются.
Топлива на основе перекиси водорода
На основе перекиси водорода создано два типа топлив.
Топлива первого типа представляют собой топлива раздельной подачи, в которых кислород, выделяющийся при разложении перекиси водорода, используется для сжигания горючего. Примером может служить топливо, применявшееся в описанном выше (стр. 95) двигателе самолета-перехватчика. Оно состояло из перекиси водорода 80%-ной концентрации и смеси гидразингидрата (N2H4 H2O) с метиловым спиртом. При добавлении в горючее специального катализатора это топливо становится самовоспламеняющимся. Сравнительно низкая теплотворная способность (1020 ккал/кг), а также малый молекулярный вес продуктов сгорания определяют низкую температуру сгорания, что облегчает работу двигателя. Однако из-за малой теплотворной способности двигатель имеет низкую удельную тягу (190 кгсек/кг).
С водой и спиртом перекись водорода может образовывать относительно взрывобезопасные тройные смеси, которые являются примером однокомпонентного топлива. Теплотворная способность таких взрывобезопасных смесей относительно невелика: 800-900 ккал/кг. Поэтому в качестве основного топлива для ЖРД они едва ли будут применяться. Такие смеси могут использоваться в парогазогене-раторах.
2. Современные топлива ракетных двигателей
127
Реакция разложения концентрированной перекиси, как уже говорилось, широко используется в ракетной технике для получения парогаза, являющегося рабочим телом турбины при насосной подаче.
Известны также двигатели, в которых тепло разложения перекиси служило для создания силы тяги. Удельная тяга таких двигателей низкая (90-100 кгсек/кг).
Для разложения перекиси используют два типа катализаторов: жидкий (раствор перманганата калия KMnO4) или твердый. Применение последнего является более предпочтительным, так как делает излишней систему подачи жидкого катализатора в реактор.

© 2024 bugulma-lada.ru -- Портал для владельцев автомобилей