Простое зарядное устройство для автомобильного аккумулятора своими руками. Самодельное зарядное устройство для автомобильного аккумулятора: схемы, инструкции. Как узнать состояние батареи

Главная / Покупка\продажа

При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна. Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.

Это в теории. На практике, владельцы автомобилей вносят поправки в эту стройную систему. Или же оборудование отказывается работать в соответствии с установленными параметрами.

Например:

  1. Эксплуатация аккумуляторной батареи, которая исчерпала свой ресурс. Элемент питания «не держит» заряд
  2. Нерегулярные поездки. Длительный простой автомобиля (особенно в период «зимней спячки») приводит к саморазряду АКБ
  3. Автомобиль используется в режиме коротких поездок, с частым глушением и запуском мотора. АКБ просто не успевает подзарядиться
  4. Подключение дополнительного оборудования увеличивает нагрузку на АКБ. Зачастую приводит к повышенному току саморазряда при выключенном двигателе
  5. Экстремально низкая температура ускоряет саморазряд
  6. Неисправная топливная система приводит к повышенной нагрузке: автомобиль заводится не сразу, приходится долго крутить стартер
  7. Неисправный генератор или регулятор напряжения не позволяет нормально заряжать аккумулятор. К этой проблеме относятся изношенные силовые провода и плохой контакт в цепи заряда
  8. И наконец, вы забыли выключить головной свет, габариты или музыку в автомобиле. Для полного разряда аккумулятора за одну ночь в гараже, иногда достаточно неплотно закрыть дверь. Освещение салона потребляет достаточно много энергии.

Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой : то есть, зарядным устройством.

Во вкладке четыре проверенных и надежных схем зарядных устройств для автомобиля от простой до самой сложной. Выбирай любую и она будет работать.

Простая схема зарядного устройства на 12В.

Зарядное устройство с регулировкой тока зарядки.

Регулировка от 0 до 10А осуществляется изменением задержки открывания тринистора.

Схема зарядного устройства для аккумулятора с самоотключением после зарядки.

Для заряда аккумуляторов емкостью 45 ампер.

Схема умного зарядного устройства, которое предупредит о не правильном подключении.

Его совершенно несложно собрать своими руками. Пример зарядного устройства сделанного из бесперебойника.

Любая схема автомобильного зарядного устройства состоит из следующих компонентов:

  • Блок питания.
  • Стабилизатор тока.
  • Регулятор силы тока заряда. Может быть ручным или автоматическим.
  • Индикатор уровня тока и (или) напряжения заряда.
  • Опционально – контроль заряда с автоматическим отключением.

Любой зарядник, от самого простого, до интеллектуального автомата – состоит из перечисленных элементов или их комбинации.

Схема простого для автомобильного аккумулятора

Формула нормального заряда простая, как 5 копеек – базовая емкость батареи, деленная на 10. Напряжение заряда должно быть немногим более 14 вольт (речь идет о стандартной стартерной батарее 12 вольт).

Тема автомобильных зарядных устройств интересна очень многим. Из статьи вы узнаете, как переделать компьютерный блок питания в полноценное зарядное устройство для автомобильных аккумуляторов. Оно будет представлять собой импульсное зарядное устройство для аккумуляторов с емкостью до 120 А·ч, то есть зарядка будет довольно мощной.

Собирать практически ничего не нужно – просто переделывается блок питания. К нему добавится всего один компонент.

Компьютерный блок питания имеет несколько выходных напряжений. Основные силовые шины имеют напряжение 3,3, 5 и 12 В. Таким образом, для работы устройства понадобится 12-вольтовая шина (желтый провод).

Для зарядки автомобильных аккумуляторов напряжение на выходе должно быть в районе 14,5-15 В, следовательно, 12 В от компьютерного блока питания явно маловато. Поэтому первым делом необходимо поднять напряжение на 12-вольтовой шине до уровня 14,5-15 В.

Затем, нужно собрать регулируемый стабилизатор тока или ограничитель, чтобы была возможность выставить необходимый ток заряда.

Зарядник, можно сказать, получится автоматическим. Аккумулятор будет заряжаться до заданного напряжения стабильным током. По мере заряда сила тока будет падать, а в самом конце процесса сравняется с нулем.

Приступая к изготовлению устройства необходимо найти подходящий блок питания. Для этих целей подойдут блоки, в которых стоит ШИМ-контроллер TL494 либо его полноценный аналог K7500.

Когда нужный блок питания найден, необходимо его проверить. Для запуска блока нужно соединить зеленый провод с любым из черных проводов.

Если блок запустился, нужно проверить напряжение на всех шинах. Если все в порядке, то нужно извлечь плату из жестяного корпуса.

После извлечения платы, необходимо удалить все провода, кроме двух черных, двух зеленого и идет для запуска блока. Остальные провода рекомендуется отпаять мощным паяльником, к примеру, на 100 Вт.

На этом этапе потребуется все ваше внимание, поскольку это самый важный момент во всей переделке. Нужно найти первый вывод микросхемы (в примере стоит микросхема 7500), и отыскать первый резистор, который применен от этого вывода к шине 12 В.

На первом выводе расположено много резисторов, но найти нужный - не составит труда, если прозвонить все мультиметром.

После нахождения резистора (в примере он на 27 кОм), необходимо отпаять только один вывод. Чтобы в дальнейшем не запутаться, резистор будет называться Rx.

Теперь необходимо найти переменный резистор, скажем, на 10 кОм. Его мощность не важна. Нужно подключить 2 провода длиной порядка 10 см каждый таким образом:

Один из проводов необходимо соединить с отпаянным выводом резистора Rx, а второй припаять к плате в том месте, откуда был выпаян вывод резистора Rx. Благодаря этому регулируемому резистору можно будет выставлять необходимое выходное напряжение.

Стабилизатор или ограничитель тока заряда очень важное дополнение, которое должно иметься в каждом зарядном устройстве. Этот узел изготавливается на базе операционного усилителя. Тут подойдут практически любые «операционники». В примере задействован бюджетный LM358. В корпусе этой микросхемы два элемента, но необходим только один из них.

Пару слов о работе ограничителя тока. В этой схеме операционный усилитель применяется в качестве компаратора, который сравнивает напряжение на резисторе с низким сопротивлением с опорным напряжением. Последнее задается при помощи стабилитрона. А регулируемый резистор теперь меняет это напряжение.

При изменении величины напряжения операционный усилитель постарается сгладить напряжение на входах и сделает это путем уменьшения или увеличения выходного напряжения. Тем самым «операционник» будет управлять полевым транзистором. Последний регулирует выходную нагрузку.

Полевой транзистор нужен мощный, поскольку через него будет проходить весь ток заряда. В примере используется IRFZ44, хотя можно использовать любой другой соответствующих параметров.

Транзистор обязательно устанавливается на теплоотвод, ведь при больших токах он будет хорошенько нагреваться. В этом примере транзистор просто прикреплен к корпусу блока питания.

Печатная плата была разведена на скорую руку , но получилось довольно неплохо.

Теперь остается соединить все по картинке и приступить к монтажу.

Напряжение выставлено в районе 14,5 В. Регулятор напряжения можно не выводить наружу. Для управления на передней панели имеется только регулятор тока заряда, да и вольтметр тоже не нужен, поскольку амперметр покажет все, что надо видеть при зарядке.

Амперметр можно взять советский аналоговый или цифровой.

Также на переднюю панель был выведен тумблер для запуска устройства и выходные клеммы. Теперь можно считать проект завершенным.

Получилось несложное в изготовлении и недорогое зарядное устройство, которое вы можете смело повторить сами.

Прикрепленные файлы :

Автоматическое зарядное устройство для автомобильного аккумулятора состоит из источника электропитания и схем защиты. Собрать его самостоятельно можно, владея навыками электромонтажных работ. При сборке используют как сложные электросхемы, так и конструируют более простые варианты устройства.

[ Скрыть ]

Требования к самодельным зарядным устройствам

Чтобы зарядка автоматически могла восстановить АКБ автомобиля, к ней предъявляются жесткие требования:

  1. Любое простое современное ЗУ должно быть автономным. Благодаря этому за работой оборудования не придется следить, в частности, если оно функционирует ночью. Устройство будет самостоятельно контролировать рабочие параметры напряжения и тока заряда. Этот режим называется автоматом.
  2. Зарядное оборудование должно самостоятельно обеспечивать стабильный уровень напряжения 14,4 вольта. Этот параметр необходим для восстановления любых батарей, работающих в 12-вольтной сети.
  3. Зарядное оборудование должно обеспечить необратимое выключение батареи от прибора при двух условиях. В частности если ток заряда или напряжение увеличится более, чем на 15,6 вольт. Оборудование должно иметь функцию самоблокировки. Пользователю, чтобы сбросить рабочие параметры, придется отключить и активировать прибор.
  4. Оборудование обязательно должно быть защищено от переплюсовки, иначе АКБ может выйти из строя. Если потребитель спутает полярность и неверно подключит минусовой и плюсовой контакт, произойдет замыкание. Важно, чтобы зарядное оборудование обеспечивало защиту. Схема дополняется предохранительным устройством.
  5. Для подключения ЗУ к аккумуляторной батарее потребуется два провода, каждый из которых должно иметь сечение 1 мм2. На один конец каждого проводника требуется установить зажим типа крокодил. С другой стороны устанавливаются разрезные наконечники. Положительный контакт должен быть выполнен в красной оболочке, а отрицательный — в синей. Для бытовой сети используется универсальный кабель, оснащенный вилкой.

Если аппарат полностью сделать своими руками, несоблюдение требований навредит не только зарядному прибору, но и аккумулятору.

Владимир Кальченко подробно рассказал о переделке ЗУ и об использовании подходящих для этой цели проводов.

Конструкция автоматического зарядного устройства

Простейший образец зарядного приспособления конструктивно включает в себя главную деталь — понижающее трансформаторное устройство. В этом элементе производится снижение параметра напряжения с 220 до 13,8 вольт, которое требуется для восстановления заряда аккумулятора. Но трансформаторное устройство может снижать только эту величину. А преобразование переменного тока на постоянный осуществляется специальным элементом — диодным мостом.

Каждое зарядное устройство должно быть оборудовано диодным мостом, поскольку эта деталь выпрямляет значение тока и позволяет разделить его на плюсовой и минусовой полюса.

В любой схеме за этой деталью обычно устанавливается амперметр. Компонент предназначен для демонстрации силы тока.

Простейшие конструкции зарядных приборов оборудуются стрелочными датчиками. В более усовершенствованных и дорогих версиях используются цифровые амперметры, а кроме них электроника может дополняться и вольтметрами.

Некоторые модели приборов позволяют потребителю изменять уровень напряжения. То есть появляется возможность заряда не только 12-вольтных аккумуляторов, но и батарей, рассчитанных на работу в 6- и 24-вольтных сетях.

От диодного моста отходят провода с положительным и отрицательным клеммным зажимом. С их помощью выполняется подключение оборудования к батарее. Вся конструкция заключается в пластиковый либо металлический корпус, от которого отходит кабель с вилкой для подключения к электросети. Также из устройства выводятся два провода с минусовым и плюсовым клеммным зажимом. Для обеспечения более безопасной работы зарядного оборудования схема дополняется плавким предохранительным устройством.

Пользователь Артем Квантов наглядно разобрал фирменный прибор для подзарядки и рассказал о его конструктивных особенностях.

Схемы автоматических зарядных устройств

При наличии навыка работы с электрооборудованием можно произвести сборку прибора самостоятельно.

Простые схемы

Такие варианты приборов делятся на:

  • устройства с одним диодным элементом;
  • оборудование с диодным мостом;
  • прибора, оснащенные сглаживающими конденсаторами.

Схема с одним диодом

Здесь есть два варианта:

  1. Можно собрать схему с трансформаторным устройством и установить диодный элемент после него. На выходе зарядного оборудования ток будет пульсирующим. Его биения будут серьезными, поскольку фактически срезывается одна полуволна.
  2. Можно собрать схему, используя блок питания от ноутбука. При его используется мощный выпрямительный диодный элемент с обратным напряжением больше 1000 вольт. Его ток должен составить не менее 3 ампер. Внешний вывод штекера питания будет отрицательным, а внутренний — положительным. Такую схему обязательно надо дополнить ограничительным сопротивлением, в качестве которого допускается применение лампочки для освещения салона.

Допускается применение более мощного осветительного устройства от указателя поворота, габаритных огней либо стоповых сигналов. При использовании блока питания от ноутбука, это может привести к его перегрузке. Если используется диод, то в качестве ограничителя надо установить лампу накаливания на 220 вольт и 100 ватт.

При применении диодного элемента выполняется сборка простой схемы:

  1. Сначала идет клемма от бытовой розетки на 220 вольт.
  2. Затем — отрицательный контакт диодного элемента.
  3. Следующим будет положительный вывод диода.
  4. Затем подключается ограничительная нагрузка - источник освещения.
  5. Следующим будет отрицательный контакт аккумулятора.
  6. Затем положительный вывод батареи.
  7. И вторая клемма для подключения к 220-вольтной сети.

При применении источника освещения на 100 ватт параметр тока заряда будет примерно 0,5 ампер. Так за одну ночь устройство сможет отдать аккумуляторной батарее 5 А/ч. Этого хватит, чтобы покрутить стартерный механизм транспортного средства.

Чтобы увеличить показатель, можно соединить параллельно три источника освещения по 100 ватт, за ночь это позволит восполнить половину емкости батареи. Некоторые пользователи вместо ламп используют электроплиты, но этого делать нельзя, поскольку из строя выйдет не только диодный элемент, но и аккумулятор.

Простейшая схема с одним диодом Электросхема подключения АКБ к сети

Схема с диодным мостом

Этот компонент предназначен для «заворачивания» отрицательной волны наверх. Сам ток будет также пульсирующим, но его биения значительно меньше. Данный вариант схемы используется чаще остальных, но не является самым эффективным.

Диодный мост можно сделать самому, используя выпрямляющие элемент, или приобрести готовую деталь.

Электросхема ЗУ с диодным мостом

Схема со сглаживающим конденсатором

Эта деталь должна быть рассчитана на 4000-5000 мкФ и 25 вольт. На выходе полученной электросхемы образуется постоянный ток. Устройство обязательно дополняется предохранительными элементами на 1 ампер, а также измерительным оборудованием. Эти детали позволяют контролировать процесс восстановления аккумулятора. Можно их не использовать, но тогда периодически потребуется подключать мультиметр.

Если производить мониторинг напряжения удобно (путем подключения клемм к щупам), то с током будет сложнее. В данном режиме функционирования измерительное устройство придется подключать в разрыв электроцепи. Пользователю понадобится каждый раз отключать питание от сети, ставить тестер в режим замера тока. Затем активировать питание и разбирать электроцепь. Поэтому рекомендуется добавить в схему как минимум один амперметр на 10 ампер.

Основной минус простых электросхем заключается в отсутствии возможности регулировки параметров заряда.

При подборе элементной базы следует выбирать рабочие параметры так, чтобы на выходе величина силы тока составила 10% от общей емкости АКБ. Возможно незначительное снижение этой величины.

Если полученный параметр тока будет больше, чем требуется, схему можно дополнитель резисторным элементом. Он устанавливается на положительном выходе диодного моста, непосредственно перед амперметром. Уровень сопротивления подбирается в соответствии с использующимся мостом с учетом показателя тока, а мощность резистора должна быть более высокой.

Электросхема со сглаживающим конденсаторным устройством

Схема с возможностью ручной регулировки тока заряда для 12 В

Чтобы обеспечить возможность изменения параметра тока, необходимо поменять сопротивление. Простой способ решить эту проблему — поставить переменный подстроечный резистор. Но этот метод нельзя назвать самым надежным. Чтобы обеспечить более высокую надежность, требуется реализовать ручную регулировку с двумя транзисторными элементами и подстроечным резистором.

С помощью переменного резисторного компонента будет меняться ток зарядки. Эта деталь устанавливается после составного транзистора VT1-VT2. Поэтому ток через данный элемент будет проходить невысокий. Соответственно, небольшой будет и мощность, она составит около 0,5-1 Вт. Рабочий номинал зависит от использующихся транзисторных элементов и выбирается опытным путем, детали рассчитаны на 1-4,7 кОм.

В схеме используется трансформаторное устройство на 250-500 Вт, а также вторичная обмотка на 15-17 вольт. Сборка диодного моста осуществляется на деталях, рабочий ток которых составляет от 5 ампер и больше. Транзисторные элементы подбираются из двух вариантов. Это могут быть германиевые детали П13-П17 либо кремниевые устройства КТ814 и КТ816. Чтобы обеспечить качественный отвод тепла, схема должна быть размещена на радиаторном устройстве (не меньше 300 см3) либо стальной пластине.

На выходе оборудования устанавливается предохранительное устройство ПР2, рассчитанное на 5 ампер, а на входе — ПР1 на 1 А. Схема оснащается сигнальными световыми индикаторами. Один из них используется для определения напряжения в сети 220 вольт, второй — для тока заряда. Допускается использование любых источников освещения, рассчитанных на 24 вольта, в том числе диодов.

Электросхема для зарядного прибора с функцией ручной регулировки

Схема защиты от переплюсовки

Есть два варианта реализации такого ЗУ:

  • с использованием реле Р3;
  • путем сборки ЗУ с интегральной защитой, но не только от переплюсовки, но и от перенапряжения и перезаряда.

С реле Р3

Данный вариант схемы может применяться с любым зарядным оборудованием, как тиристорным, так и транзисторным. Ее необходимо включить в разрыв кабелей, посредством которых производится подключение батареи к ЗУ.

Схема защиты оборудования от переплюсовки на реле Р3

Если аккумуляторная батарея подключена к сети некорректно, диодный элемент VD13 не будет пропускать ток. Реле электросхемы обесточено, а его контакты разомкнуты. Соответственно, ток не сможет поступать на клеммы батареи. Если подключение выполнено правильно, то реле активируется и его контактные элементы замыкаются, поэтому АКБ заряжается.

С интегрированной защитой от переплюсовки, перезаряда и перенапряжения

Данный вариант электросхемы можно встроить в уже использующийся самодельный источник питания. В ней применяется медленный отклик аккумулятора на скачок напряжения, а также гистерезис реле. Напряжение с током отпускания будет в 304 раза меньше данного параметра при срабатывании.

Применяется реле переменного тока на напряжение активации 24 вольта, а ток величиной 6 ампер идет через контакты. При активации зарядного прибора включается реле, происходит замыкание контактных элементов и начинается зарядка.

Параметр напряжения на выходе трансформаторного устройства снижается ниже 24 вольт, но на выходе зарядного прибора будет 14,4 В. Реле должно удерживать это значение, но при появлении экстратока первичная величина напряжения еще больше просядет. Это приведет к отключению реле и разрыву электроцепи заряда.

Использование диодов Шоттки в этом случае нецелесообразно, поскольку данный тип схемы будет иметь серьезные недостатки:

  1. Отсутствует защита от скачка напряжения по контакту от переплюсовки, если аккумулятор полностью разряжен.
  2. Нет самоблокировки оборудования. В результате воздействия экстратока реле будет отключаться, пока не выйдут из строя контактные элементы.
  3. Нечеткое срабатывание оборудования.

Из-за этого добавить в данную схему устройство для регулировки тока срабатывания не имеет смысла. Реле и трансформаторное устройство точно подбираются друг к другу, чтобы повторяемость элементов была близка к нулю. Ток заряда проходит через замкнутые контакты реле К1, в результате чего снижается вероятность их выхода из строя из-за обгорания.

Обмотка К1 должна подключаться по логической электросхеме:

  • к модулю защиты от экстратока, это VD1, VT1 и R1;
  • к устройству защиты от перенапряжения, это элементы VD2, VT2, R2-R4;
  • а также к электроцепи самоблокировки К1.2 и VD3.


Схема с интегрированной защитой от переплюсовки, перезаряда и перенапряжения

Основной минус состоит в необходимости налаживания схемы с применением балластной нагрузки, а также мультиметра:

  1. Производится выпаивание элементов К1, VD2 и VD3. Либо при сборке их можно не запаивать.
  2. Выполняется активация мультиметра, который надо заранее настроить на замер напряжения в 20 вольт. Его надо подключить вместо обмотки К1.
  3. Аккумулятор пока не подключается, вместо него устанавливается резисторное устройство. Оно должно обладать сопротивлением в 2,4 Ома для тока заряда 6 А или 1,6 Ом для 9 ампер. Для 12 А резистор должен быть рассчитан на 1,2 Ом и не меньше, чем на 25 Вт. Резисторный элемент можно накрутить из аналогичной проволоки, которая использовалась для R1.
  4. На вход от зарядного оборудования подается напряжение 15,6 вольт.
  5. Должна сработать токовая защита. Мультиметр покажет напряжение, поскольку элемент сопротивления R1 выбран с небольшим избытком.
  6. Производится уменьшение параметра напряжения, пока тестер не покажет 0. Значение выходного напряжения надо записать.
  7. Затем производится выпайка детали VT1, а VD2 и К1 устанавливаются на место. R3 необходимо поставить в крайнее нижнее положение в соответствии с электросхемой.
  8. Величина напряжения зарядного оборудования увеличивается, пока на нагрузке не будет 15,6 вольт.
  9. Элемент R3 плавно вращается, пока не сработает К1.
  10. Выполняется снижение напряжения зарядного прибора до значения, которое было записано ранее.
  11. Обратно устанавливаются и припаиваются элементы VT1 и VD3. После этого электросхему можно проверять на работоспособность.
  12. Через амперметр выполняется подключение рабочего, но севшего или недозаряженного аккумулятора. К батарее надо подсоединить тестер, который заранее настроен на измерение напряжения.
  13. Пробный заряд необходимо провести с непрерывным контролем. В момент, когда тестер покажет 14,4 вольта на аккумуляторе, необходимо засечь ток содержания. Этот параметр должен быть в норме или близким к нижнему пределу.
  14. Если величина тока содержания высокая, то напряжение зарядного прибора следует снизить.

Схема автоматического отключения при полной зарядке аккумулятора

Автоматика должна представлять собой электросхему, оснащенную системой питания операционного усилительного устройства и опорного напряжения. Для этого используется плата стабилизатора DA1 класса 142ЕН8Г для 9 вольт. Данную схему необходимо предназначать, чтобы уровень выходного напряжения при измерении температуры платы на 10 градусов практически не менялся. Изменение составит не больше, чем сотые доли вольта.

В соответствии с описанием схемы, система автоматической деактивации при увеличении напряжения на 15,6 вольт делается на половине платы А1.1. Четвертый ее вывод соединяется с делителем напряжения R7 и R8, с которого подается опорная величина, составляющая 4,5В. Рабочим параметром резисторного устройства задается порог активации зарядного приспособления 12,54 В. В результате использования диодного элемента VD7 и детали R9 можно обеспечить нужный гистерезис между величиной напряжения активации и отключения заряда батареи.

Электросхема ЗУ с автоматической деактивацией при заряженной батарее

Описание действия схемы такой:

  1. Когда происходит подключение батареи, уровень напряжения на клеммах которого меньше 16,5 вольт, на втором выводе схема А1.1 устанавливается параметр. Данное значение достаточно, чтобы транзисторный элемент VT1 открылся.
  2. Происходит открытие этой детали.
  3. Активируется реле Р1. В результате к сети через блок конденсаторных механизмов посредством контактных элементов подключается первичная обмотка трансформаторного устройства.
  4. Начинается процесс восполнения заряда АКБ.
  5. Когда уровень напряжения увеличится до 16,5 вольт, это значение на выходе А1.1 снизится. Уменьшение происходит до величины, которой недостаточно для поддержания транзисторного устройства VT1 в открытом состоянии.
  6. Происходит отключение реле и контактные элементы К1.1 подключать трансформаторный узел через конденсаторное устройство С4. При нем величина тока заряда будет 0,5 А. В этом состоянии схема оборудования будет работать, пока величина напряжения на батарее не снизится до 12,54 вольт.
  7. После того, как это произойдет, выполняется активация реле. Продолжается зарядка АКБ заданным пользователем током. В данной схеме реализована возможность отключения системы автоматической регулировки. Для этого используется переключательное устройство S2.

Данный порядок работы автоматического зарядного устройства для автомобильного аккумулятора позволяет предотвратить его разряд. Пользователь может оставить включенным оборудование хоть на неделю, это не навредит батарее. Если в бытовой сети пропадет напряжение, при его появлении ЗУ продолжит заряжать аккумулятор.

Если говорить о принципе действия схемы, собранной на второй половине платы А1.2, то он идентичен. Но уровень полной деактивации зарядного оборудования от сети питания составит 19 вольт. Если величина напряжения меньше, на восьмом выход платы А1.2 оно будет достаточным, чтобы удержать транзисторное устройство VT2 в открытом положении. При нем ток будет подаваться на реле Р2. Но если величина напряжения составит более 19 вольт, то транзисторное устройство закроется и контактные элементы К2.1 разомкнутся.

Необходимые материалы и инструменты

Описание деталей и элементов, которые потребуются для сборки:

  1. Силовой трансформаторное устройство Т1 класса ТН61-220. Его вторичные обмотки должны быть подключены последовательно. Можно использовать любой трансформатор, мощность которого не больше 150 ватт, поскольку ток заряда обычно составляет не более 6А. Вторичная обмотка устройства при воздействии электротока до 8 ампер должна обеспечить напряжение в диапазоне 18-20 вольт. При отсутствии готового трансформатора допускается применение деталей аналогичной мощности, но потребуется перемотать вторичную обмотку.
  2. Конденсаторные элементы С4-С9 должны соответствовать классу МГБЧ и иметь напряжение не ниже 350 вольт. Допускается применение устройств любого типа. Главное, чтобы они предназначались для функционирования в цепях переменного тока.
  3. Диодные элементы VD2-VD5 можно использовать любые, но они должны быть рассчитаны на ток 10 ампер.
  4. Детали VD7 и VD11 - кремневые импульсные.
  5. Диодные элементы VD6, VD8, VD10, VD5, VD12, VD13 должны выдерживать ток величиной 1 ампер.
  6. Светодиодный элемент VD1 — любой.
  7. В качестве детали VD9 допускается использование устройства класса КИПД29. Основная особенность данного источника освещения заключается в возможности изменения цвета, если меняется полярность соединения. Для переключения лампочки применяются контактные элементы К1.2 реле Р1. Если на аккумулятор идет зарядка основным током, светодиод горит желтым, а если включается режим подзарядки, то зеленым. Допускается применение двух одноцветных устройств, но их надо правильно подключить.
  8. Операционный усилитель КР1005УД1. Можно взять устройство из старого видеоплейера. Основная особенность заключается в том, что этой детали не требуется два полярных питания, она сможет работать при напряжении 5-12 вольт. Можно использовать любые аналогичные запчасти. Но из-за разной нумерации выводов надо будет изменить рисунок печатной схемы.
  9. Реле Р1 и Р2 должны быть рассчитаны на напряжения 9-12 вольт. А их контакты — на работу с током величиной 1 ампер. Если устройства оснащаются несколькими контактными группами, их рекомендуется запаять параллельным образом.
  10. Реле Р3 — на 9-12 вольт, но величина тока коммутации будет 10 ампер.
  11. Переключательное устройство S1, должно быть предназначено для работы с напряжением 250 вольт. Важно, чтобы в этом элементе было достаточно коммутирующих контактных компонентов. Если шаг регулировки в 1 ампер неважен, то можно поставить несколько переключателей и выставить ток заряда 5-8 А.
  12. Выключатель S2, предназначен для деактивации системы контроля уровня заряда.
  13. Также потребуется электромагнитная головка для измерителя тока и напряжения. Допускается применение любого типа устройств, главное, чтобы ток полного отклонения составит 100 мкА. Если будет замеряться не напряжение, а только ток, то в схему можно установить готовый амперметр. Он должен быть рассчитан на работу с максимальным постоянным током 10 ампер.

Пользователь Артем Квантов в теории рассказал о схеме зарядного оборудования, а также о подготовке материалов и деталей для ее сборки.

Порядок подключения аккумулятора к зарядным устройствам

Инструкция по включению ЗУ состоит из нескольких этапов:

  1. Очистка поверхности аккумулятора.
  2. Удаление пробок для заливки жидкости и контроль уровня электролита в банках.
  3. Выставление значения тока на зарядном оборудовании.
  4. Подключение клемм к аккумулятору с соблюдением полярности.

Очистка поверхности

Руководство по выполнению задачи:

  1. В автомобиле отключается зажигание.
  2. Открывается капот машины. Используя гаечные ключи соответствующего размера, от клемм аккумуляторной батареи надо отключить зажимы. Для этого гайки выкручивать не нужно, их можно ослабить.
  3. Выполняется демонтаж фиксирующей пластины, которая крепит батарею. Для этого может потребоваться ключ-головка либо звездочка.
  4. АКБ демонтируется.
  5. Производится очистка его корпуса чистой ветошью. Впоследствии будут откручиваться крышки банок для залива электролита, поэтому нельзя допустить попадания грузи внутрь.
  6. Выполняется визуальная диагностика целостности корпуса батареи. При наличии трещин, через которые вытекает электролит, заряжать АКБ нецелесообразно.

Пользователь Аккумуляторщик рассказал о выполнении очистки и промывки корпуса аккумуляторной батареи перед ее обслуживанием.

Удаление пробок заливки кислоты

Если аккумуляторная батарея обслуживаемая, в ней надо открутить крышки на пробках. Они могут быть скрыты под специальной защитной пластиной, ее нужно демонтировать. Для выкручивания пробок можно использовать отвертку или любую металлическую пластину соответствующего размера. После демонтажа надо оценить уровень электролита, жидкость должна полностью покрывать все банки внутри конструкции. Если ее недостаточно, то требуется долить дистиллированной воды.

Установка величины тока заряда на зарядном устройстве

Выставляется параметр тока для подзарядки АКБ. Если эта величина будет больше номинальной в 2-3 раза, то процедура заряда произойдет в быстрее. Но этот метод приведет к снижению ресурса эксплуатации батареи. Поэтому выставлять такой ток можно, если аккумулятор надо подзарядить быстро.

Подключение аккумулятора с соблюдением полярности

Процедура выполняется так:

  1. К клеммам АКБ подключаются зажимы от ЗУ. Сначала выполняется соединение положительного контакта, это красный провод.
  2. Отрицательный кабель можно не подключать, если АКБ остался в автомобиле и не демонтировался. Подсоединение данного контакта возможно к кузову транспортного средства либо к блоку цилиндров.
  3. Вилка от зарядного оборудования вставляется в розетку. Аккумулятор начинает заряжаться. Время заряда зависит от степени разряда устройства и его состояния. При выполнении задачи не рекомендуется использование удлинителей. Такой провод обязательно должен иметь заземление. Его величина будет достаточной, чтобы выдержать нагрузку силы тока.

Канал «VseInstrumenti» рассказал об особенностях подключения АКБ к зарядному прибору и соблюдении полярности при выполнении этой задачи.

Как определить степень разрядки аккумулятора

Для выполнения задачи потребуется мультиметр:

  1. Производится замер величины напряжения на автомобиле с отключенным двигателем. Электросеть транспортного средства в таком режиме будет потреблять часть энергии. Значение напряжения при замере должно соответствовать 12,5-13 вольтам. Выводы тестера подключаются с соблюдением полярности к контактам АКБ.
  2. Производится запуск силового агрегата, все электрооборудование должно быть выключено. Процедура измерения повторяется. Рабочая величина должна составить в диапазоне 13,5-14 вольт. Если полученное значение больше или меньше, это говорит о разряде аккумулятора и функционировании генераторного устройства не в штатном режиме. Увеличение данного параметра при низкой отрицательной температуре воздуха не может сообщить о разряде аккумулятора. Возможно, сначала полученный показатель будет больше, но если со временем он придет в норму, это говорит о работоспособности.
  3. Выполняется включение основных потребителей энергии - отопителя, магнитолы, оптики, системы обогрева заднего стекла. В таком режиме уровень напряжения составит в диапазоне от 12,8 до 13 вольт.

Величину разряда можно определить в соответствии с данными, приведенными в таблице.

Как рассчитать примерное время зарядки аккумулятора

Для определения приблизительного времени подзарядки потребителю необходимо знать разницу между максимальным значением заряда (12,8 В) и вольтажом в данный момент. Эта величина умножается на 10, в итоге получается время заряда в часах. Если уровень напряжения перед выполнением подзарядки составляет 11,9 вольт, то 12,8-11,9=0,8. Умножив это значение на 10 можно определить, что время подзарядки составит примерно 8 часов. Но это при условии, что будет осуществляться подача тока в размере 10% от емкости аккумулятора.

Для того чтобы автомобиль завёлся, ему необходима энергия. Такая энергия берётся из аккумулятора. Как правило, его подзарядка происходит от генератора во время работы двигателя. Когда автомобиль долго не используется или батарея неисправна, она разряжается до такого состояния, что машина уже не может завестись . В этом случае требуется внешняя зарядка. Такое устройство можно купить или собрать самостоятельно, но для этого понадобится схема зарядного устройства.

Принцип работы автомобильного аккумулятора

Автомобильный аккумулятор подаёт питание на различные приборы в автомобиле при выключенном двигателе и предназначен для его запуска. По виду типу исполнения применяется свинцово-кислотная батарея. Конструктивно она собирается из шести элементов питания с номинальным значением напряжения 2,2 вольта, соединённых между собой последовательно. Каждый элемент представляет собой набор решетчатых пластин из свинца. Пластины покрываются активным материалом и погружаются в электролит.

Раствор электролита включает в свой состав дистиллированную воду и серную кислоту . От плотности электролита зависит морозостойкость батареи. В последнее время появились технологии, позволяющие адсорбировать электролит в стеклянном волокне или сгущать его с использованием силикагеля до гелеобразного состояния.

Каждая пластина имеет отрицательный и положительный полюс, а изолируются они между собой использованием пластмассового сепаратора. Корпус изделия выполняется из пропилена, не разрушающегося под действием кислоты и служащий диэлектриком. Положительный полюс электрода покрывается диоксидом свинца, а отрицательный губчатым свинцом. В последнее время стали выпускаться аккумуляторные батареи с электродами из свинцово-кальциевого сплава. Такие аккумуляторы полностью герметичные и не требуют обслуживания.

При подключении к аккумулятору нагрузки активный материал на пластинах вступает в химическую реакцию с раствором электролита, и возникает электрический ток. Электролит со временем истощается из-за осаждения сульфата свинца на пластинках. Аккумуляторная батарея (АКБ) начинает терять заряд. В процессе зарядки химическая реакция происходит в обратном порядке, сульфат свинца и вода преобразуются, повышается плотность электролита и восстанавливается величина заряда.

Аккумуляторы характеризуются значением саморазряда. Он возникает в АКБ при его бездействии. Основной причиной служит загрязнения поверхности батареи и плохого качества дистиллятора. Скорость саморазряда ускоряется при разрушении свинцовых пластин.

Виды зарядных устройств

Разработано большое количество схем автомобильных зарядных устройств, использующих разные элементные базы и принципиальный подход. По принципу действия приборы заряда разделяются на две группы:

  1. Пуско-зарядные, предназначенные для запуска двигателя при нерабочем аккумуляторе. Кратковременно подавая на клеммы аккумулятора ток большой величины, происходит включение стартера и запуск двигателя, а в дальнейшем заряд батареи происходит от генератора автомобиля. Они выпускаются только на определённое значение тока или с возможностью выставления его величины.
  2. Предпусковые зарядные, к клеммам аккумуляторной батареи подключаются выводы с устройства и подаётся ток длительное время. Его значение не превышает десяти ампер, в течение этого времени происходит восстановление энергии батареи. В свою очередь, они разделяются: на постепенные (время зарядки от 14 до 24 часов), ускоренные (до трёх часов) и кондиционирующие (около часа).

По своей схемотехники выделяются импульсные и трансформаторные устройства. Первого вида используют в работе высокочастотный преобразователь сигнала, характеризуются малыми размерами и весом. Второго вида в качестве основы используют трансформатор с выпрямительным блоком, просты в изготовлении, но обладают большим весом и низким коэффициентом полезного действия (КПД).

Выполнено зарядное устройство для автомобильных аккумуляторов своими руками или приобретено в торговой точке, требования, предъявляемые к нему одинаковы, а именно:

  • стабильность выходного напряжения;
  • высокое значение КПД;
  • защита от короткого замыкания;
  • индикатор контроля заряда.

Одной из главных характеристик прибора заряда является величина тока, которым заряжается батарея. Правильно зарядить аккумулятор и продлить его рабочие характеристики получится только при подборе нужного его значения. При этом важна и скорость заряда. Чем больше ток, тем выше и скорость, но высокое значение скорости приводит к быстрой деградации аккумулятора. Считается, что правильным значением тока будет величина равная десяти процентам от ёмкости батарейки. Ёмкость определяется как величина тока, отдаваемая АКБ за единицу времени, измеряется она в ампер-часах.

Самодельный зарядный прибор

Приспособление для заряда должно быть у каждого автолюбителя, поэтому если нет возможности или желания приобрести готовый прибор, ничего не останется, как сделать зарядку для аккумулятора самостоятельно. Несложно изготовить своими руками как простейшее, так и многофункциональное устройство. Для этого понадобится схема и набор радиоэлементов. Существует также возможность переделать источник бесперебойного питания (ИБП) или компьютерный блок (АТ) в прибор для подзарядки АКБ.

Трансформаторное зарядное устройство

Такое устройство самое простое в сборке и не содержит дефицитных деталей. Схема состоит из трёх узлов:

  • трансформатор;
  • выпрямительный блок;
  • регулятор.

Напряжение из промышленной сети поступает на первичную обмотку трансформатора. Сам трансформатор может использоваться любого вида. Состоит он из двух частей: сердечника и обмоток. Сердечник собирается из стали или феррита, обмотки - из проводникового материала.

Принцип работы трансформатора основан на появлении переменного магнитного поля при прохождении тока по первичной обмотке и передачи его на вторичную. Для получения на выходе требуемого уровня напряжения количество витков во вторичной обмотке делается меньше, по сравнению с первичной. Уровень напряжения на вторичной обмотке трансформатора выбирается равным 19 вольт, а его мощность должна обеспечивать троекратный запас по току заряда.

С трансформатора пониженное напряжение проходит через выпрямительный мост и поступает на реостат, подключённый последовательно к аккумулятору. Реостат предназначен для регулирования величины напряжения и тока, путём изменения сопротивления. Сопротивление реостата не превышает 10 Ом. Величина тока контролируется включённым последовательно перед аккумулятором амперметром. Такой схемой не получится заряжать АКБ с ёмкостью более 50 Ач, так как реостат начинает перегреваться.

Упростить схему можно, убрав реостат, а на входе перед трансформатором установить набор конденсаторов, использующихся как реактивные сопротивления для уменьшения напряжение сети. Чем меньше номинальное значение ёмкости, тем меньше напряжение поступает на первичную обмотку в сети.

Особенность такой схемы в необходимости обеспечения уровня сигнала на вторичной обмотке трансформатора в полтора раза большее, чем рабочее напряжение нагрузки. Такую схему можно использовать и без трансформатора, но это очень опасно. Без гальванической развязки можно получить поражение электрическим током.

Импульсное устройство подзаряда

Достоинство импульсных устройств в высоком КПД и компактных размерах. В основе прибора лежит микросхема с широтно-импульсной модуляцией (ШИМ). Собрать мощное импульсное зарядное устройство своими руками можно по следующей схеме.

В качестве ШИМ контроллера используется драйвер IR2153. После выпрямительных диодов параллельно АКБ ставится полярный конденсатор С1 с ёмкостью в пределах 47−470 мкФ и напряжением не менее 350 вольт. Конденсатор убирает всплески сетевого напряжения и шумы линии. Диодный мост используется с номинальным током более четырёх ампер и с обратным напряжением не менее 400 вольт. Драйвер управляет мощными N-канальными полевыми транзисторами IRFI840GLC, установленными на радиаторах. Ток такой зарядки будет равен до 50 ампер, а выходная мощность до 600 Ватт.

Изготовить импульсное зарядное устройство для автомобиля своими руками можно, используя переделанный компьютерный источник питания формата АТ. В качестве ШИМ контроллера в них используется распространённая микросхема TL494. Сама переделка заключается в увеличении выходного сигнала до 14 вольт. Для этого понадобится правильно установить подстроечный резистор.

Резистор, который соединяется первую ногу TL494 со стабилизированной шиной + 5 В, удаляется, а вместо второго, связанного с 12 вольтовой шиной, впаивается переменный резистор с номиналом 68 кОм. Этим резистором и устанавливается требуемый уровень выходного напряжения. Включение блока питания осуществляется через механический выключатель, согласно указанной на корпусе блока питания схеме.

Устройство на микросхеме LM317

Довольно простая, но стабильно работающая схема зарядки легко выполняется на интегральной микросхеме LM317. Микросхема обеспечивает установку уровня сигнала 13,6 вольт при максимальной силе тока 3 ампера. Стабилизатор LM317 снабжён встроенной защитой от короткого замыкания.

Напряжение на схему прибора подаётся через клеммы от независимого блока питания постоянного напряжения 13−20 вольт. Ток, проходя через индикаторный светодиод HL1 и транзистор VT1, поступает на стабилизатор LM317. С его выхода непосредственно на АКБ через X3, X4. Делителем, собранным на R3 и R4, устанавливается необходимое значение напряжения для открывания VT1. Переменным резистором R4 задаётся ограничение тока подзарядки, а R5 уровень выходного сигнала. Выходное напряжение устанавливается от 13,6 до 14 вольт.

Схему можно максимально упростить, но её надёжность уменьшится.

В ней резистором R2 подбирают ток. В качестве резистора используется мощный проволочный элемент из нихрома. Когда АКБ разряжен, ток заряда максимальный, светодиод VD2 горит ярко, по мере заряда ток начинает спадать и светодиод тускнеет.

Зарядное из источника бесперебойного питания

Сконструировать зарядник можно из обычного бесперебойника даже с неисправностью узла электроники. Для этого удаляется из блока вся электроника, кроме трансформатора. К высоковольтной обмотке трансформатора на 220 В добавляется схема выпрямителя, стабилизации тока и ограничения напряжения.

Выпрямитель собирается на любых мощных диодах, например, отечественных Д-242 и сетевом конденсаторе 2200 мкФ на 35−50 вольт. На выходе получится сигнал с напряжением 18−19 вольт. В качестве стабилизатора напряжения используется микросхема LT1083 или LM317 с обязательной установкой на радиатор.

Подключив аккумуляторную батарею, выставляется напряжение, равное 14,2 вольта. Контролировать уровень сигнала удобно с помощью вольтметра и амперметра. Вольтметр подключается параллельно клеммам батареи, а амперметр последовательно. По мере заряда АКБ его сопротивление будет возрастать, а ток падать. Ещё проще выполнить регулятор с помощью симистора, подключённого к первичной обмотке трансформатора наподобие диммера.

При самостоятельном изготовлении устройства следует помнить про электробезопасность при работе с сетью переменного тока 220 В. Как правило, верно выполненный прибор зарядки из исправных деталей начинает работать сразу, требуется лишь только выставить тока заряда.

© 2024 bugulma-lada.ru -- Портал для владельцев автомобилей