Регулировка опережения впрыска топлива дизель. Система зажигания двигателя – выставляем правильный угол опережения впрыска. Почему дизельному двигателю нужен регулятор

Главная / Ремонт

Угол опережения впрыска (УОВ) и нагрузка в дизельном двигателе

(Примечание: данная статья является общепознавательной и не привязана к какой либо марке автомобиля)

Странно слышать мнение специалиста, диагноста, ремонтника о том, что угол опережения впрыска в дизельном двигателе при его работе изменяется только в зависимости от частоты вращения его коленчатого вала.

Несомненно, частота вращения коленчатого вала является одним из основных параметров (характеристик), учитывающихся при организации горения топливовоздушной смеси в камере сгорания двигателя как дизельного, так и бензинового.

От частоты вращения коленчатого вала - скорости движения поршня в цилиндре двигателя - зависит количество рабочего тела в камере сгорания двигателя и его температура.

С увеличением частоты вращения коленчатого вала абсолютные длительности задержек воспламенения (в миллисекундах) сокращаются, но относительные длительности в градусах оборота коленчатого вала возрастают. Не надо забывать и о таком моменте, как задержка впрыскивания (время между началом подачи топлива насосом и впрыском топлива форсункой в камеру сгорания).

ЧЕМ ВЫШЕ ЧАСТОТА ВРАЩЕНИЯ КОЛЕНЧАТОГО ВАЛА, ТЕМ РАНЬШЕ НУЖНО ВПРЫСНУТЬ В КАМЕРУ СГОРАНИЯ ТОПЛИВО И НАОБОРОТ.

Можно ли при организации горения в цилиндрах дизельного двигателя ограничиться регулировкой УОВ по частоте вращения коленчатого вала? Или, может быть, есть ещё что-то, что требует нашего внимания?

Внимания требуют особенности смесеобразования и горения в камере сгорания дизельного двигателя.

Прежде всего, дизель относится к двигателям с внутренним смесеобразованием и впрыском топлива в конце такта сжатия. На смесеобразование отводится всего 1 - 3 мс или 12 - 25° по углу поворота коленчатого вала двигателя. Это в 20 - 30 меньше, чем в двигателях с внешним и внутренним (впрыск в такте впуска) смесеобразованием (большинство бензиновых двигателей работают на гомогенных - однородных топливовоздушных смесях).

Дизельный двигатель способен работать на обедненных смесях с коэффициентом избытка воздуха на холостом ходу и при нулевой нагрузке=10. Значение для дизелей с наддувом при полной нагрузке находится в пределах .. = 1,15 - 2,0. То есть состав топливовоздушной смеси изменяется от очень бедной до бедной.

Благодаря гетерогенному (неоднородному) составу топливовоздушной смеси (ТВС) в камере сгорания дизельного двигателя имеются области с богатой и бедной смесью, области, где только воздух или только дизельное топливо. И, конечно же, имеются так необходимые для своевременного воспламенения области топливовоздушной смеси (ТВС) со стехиометрическим составом. То есть целый набор составов смесей.

Эти условия справедливы как для двигателей с раздельными камерами сгорания, так и для дизельных двигателей с непосредственным (прямым) впрыском. Именно неоднородный состав топливовоздушной смеси (ТВС) позволяет дизельному двигателю работать на обеднённых смесях.

С другой стороны, тот же неоднородный состав смеси (ТВС) при меньших значениях является одним из

основных недостатков дизелей - невозможности полного и бездымного сгорания топливовоздушной смеси (ТВС).

Кроме визуального подтверждения написанного, я хочу показать Вам с помощью диаграммы основные процессы, происходящие в камере сгорания дизельного двигателя.

Речь не будет идти о «взрывах». Будем говорить об управляемых и контролируемых событиях, происходящих во времени параллельно и последовательно. Нужно увидеть этот график и запомнить. Особенно важны температурные изменения у дизеля.

На рис.1 представлена типичная диаграмма изменения в цилиндре двигателя давления р и средней температуры t газов в функции угла ф, показан характер изменения во времени количества ст поданного в камеру сгорания топлива, скорость его подачи, коэффициента активного тепловыделения X и скорости тепловыделения

Для наглядности и простоты восприятия диаграмма нарисована в развёрнутом виде. Рассматривать её необходимо слева направо.

Поршень движется к верхней мёртвой точке, давление и температура рабочего тела растут, и если в точке 1 не будет впрыска топлива, то при движении поршня от ВМТ к НМТ давление и температура будут уменьшаться (обозначено пунктирной линией).

Подача топлива начинается в точке 1, в точке 2 появляются первые языки пламени.

Этот периодназывается задержкой воспламенения и он характеризуется тем, что поршень приближается к ВМТ, объём камеры сгорания уменьшается, температура и давление растут.

Рис. 1

Количество топлива ст в этот период подаётся незначительное, но с большой скоростью

Температура в камере сгорания (в связи с впрыском) несколько снижается, а соответственно и давление сжимаемого воздуха вследствие затраты тепла на нагревание и испарение топлива.

От точки 2 до точки 3 - фаза быстрого сгорания

Она характеризуется тем, что поршень «переваливает» ВМТ, то есть объём камеры сгорания сначала уменьшается, а затем начинает увеличиваться.

Давление при движении поршня от ВМТ достигает максимальных значений, температура продолжает расти. Этот период характеризует «жесткость» процесса сгорания в дизеле.

В этот период в камеру сгорания впрыскивается основное количество топлива ст с максимально возможной скоростью, Скорость тепловыделения резко возрастает и достигает максимальных значений, а затем начинает уменьшаться. Коэффициент активного тепловыделения X растёт.

От точки 3 до точки 4 - фаза замедленного горения

Она характеризуется тем, что поршень движется от ВМТ к НМТ, объём камеры сгорания увеличивается. Давление р расширяющихся газов уменьшается, а их температура t достигает максимума.

В этой фазе заканчивается впрыск топлива.

В конце фазы замедленного горения наблюдается некоторое увеличение скорости тепловыделения , связанное с дополнительной турбулиза-цией заряда в начале нисходящего хода поршня. Коэффициент активного тепловыделения X растёт.

От точки 4 и до открытия выпускного клапана - фаза догорания

Она характеризуется тем, что поршень движется к НМТ - объём камеры сгорания увеличивается, давление и температура уменьшаются. Коэффициент активного тепловыделения X стабилизируется (коэффициент активного тепловыделения X характеризует связь между процессами сгорания и использованием выделяющегося тепла - смотри специальную литературу).

Горение - сложный физико-химический процесс, который протекает в газовой фазе. То есть сначала жидкое топливо должно превратиться в пар, а затем в результате химических реакций превратиться в горючую смесь способную при сгорании совершать механическую работу.

Жидкое топливо, впрыснутое в камеру сгорания, дробится на мелкие капли, распределяется по ней, нагревается и испаряется. В этом заключается суть физических процессов, и они протекают с поглощением тепла.

Процессы окисления имеют многостадийный характер и являются цепными. В результате химических реакций (протекают с выделением тепла) образуется ряд активных промежуточных химических продуктов (перекисей, альдегидов, спиртов и т.п.) способствующих дальнейшему ходу реакций.

Самовоспламенение есть конечным результатом развития этих реакций.

Истинная последовательность элементарных стадий в реакциях окисления и горения моторных топлив изучена ещё не полностью, однако характерным для большинства химических реакций является зависимость их скоростей от температуры и давления.

Сказанное выше совсем не означает, что физические и химические процессы осуществляются последовательно. Всё происходит почти одновременно. Химическая составляющая процесса горения несколько отстаёт в силу того, что сначала, всё-таки должно появиться в камере сгорания жидкое топливо. Более мелкие капли испаряются первыми. Как правило, эти мелкие капли группируются по краям факела впрыскиваемого форсункой топлива. Динамика развития топливного факела в механической системе такова, что он не может мгновенно занять объём камеры сгорания в цилиндре двигателя, сначала незначительное количество топлива под высоким давлением впрыскивается в цилиндр. Этому способствует закон подачи топлива (каждой фазе горения своё количество топлива), выраженный конструктивно в деталях механических систем впрыска. Впрыск дизельного топлива в этих системах осуществляется непрерывно.

В распределительных ТНВД с электромагнитными клапанами возможно осуществление предварительного впрыска топлива. Насос-форсунки легковых автомобилей обеспечивают предварительный впрыск с помощью гидромеханического привода.

Аккумуляторные системы впрыска дизельного топлива выгодно отличаются от всех предыдущих систем тем, что, кроме предварительного и основного впрысков, обеспечивают ещё и дополнительные. В отличие от применявшегося ранее на некоторых марках автомобилей двухступенчатого впрыска, в условиях непрерывной подачи топлива в аккумуляторных системах предварительный впрыск - раздельный.

Но сейчас не об этом.

Так вот, предварительное количество топлива с большой скоростью впрыскивается в нагретую плотную газовую среду, разрушается и испаряется. Обладая небольшой кинетической энергией, это малое (1-4 мм 3) количество топлива не способно пробиться сквозь плотный воздух и остаётся в районе форсунки и свечи накаливания. В процессе смесеобразования всегда образуются зоны, где X = 0,85...0,9. Эти зоны служат центрами воспламенения окружающей более обеднённой смеси.

Ко времени основного впрыска топлива топливо, впрыснутое в камеру сгорания предварительно, уже готово к воспламенению и воспламеняется. В камере сгорания резко повышаются давление и температура, что способствует значительному сокращению задержки воспламенения основного впрыска. Дизельное топливо под высоким давлением при основном впрыскивании, обладая большей кинетической энергией, пробивается сквозь всё более уплотняющуюся (уже горящую) газовую среду ко всем удалённым от форсунки зонам камеры сгорания.

Движение воздуха, заданное конструкцией впускного коллектора, движением поршня в такте сжатия многократно усиливается движущимися от точек воспламенения в разных направлениях расширяющимися продуктами сгорания. Массы воздуха, находящиеся в турбулентном движении, пульсирующие газовые потоки пронизываются топливными факелами (отверстий в распылителе может быть от 4 до 10; в большинстве случаев - 6ч-8.) В этих условиях топливо, которое продолжает впрыскиваться, сгорает практически мгновенно.

Давление в цилиндре нарастает своевременно, плавно и без шума.

СКОРОСТЬ ГОРЕНИЯ ЖИДКОГО ТОПЛИВА ОПРЕДЕЛЯЕТСЯ

СКОРОСТЯМИ ЕГО ИСПАРЕНИЯ И СМЕШЕНИЕМ ОБРАЗУЮЩИХСЯ ПАРОВ С ВОЗДУХОМ

Это справедливо для двигателей внутреннего сгорания, работающих на лёгком и тяжёлом видах жидкого топлива.

Впрыск топлива в камеру сгорания дизельного двигателя влечёт за собой

падение температуры (испарение топлива сопровождается поглощением тепла).

Величина падения температуры зависит от нагрузки.

Это особенно заметно при переходных режимах, связанных с увеличением нагрузки.

На стр. 58 Первого издания книги BOSCH «Системы управления дизельными двигателями» (перевод с немецкого издательства «За рулем», 2004год) показана характеристика момента начала впрыскивания в зависимости от частоты вращения коленчатого вала и нагрузки на двигатель легкового автомобиля при холодном пуске и рабочей температуре.

1) холодный пуск (<0 °С);

Рис. 2

Несложно заметить, что при частоте вращения коленчатого вала 1000 об/ мин при частичных нагрузках (3) и полной нагрузке (2) требуется свой, соответствующий нагрузке, УОВ топлива. То есть большее количество топлива необходимо впрыснуть в камеру сгорания двигателя раньше для того, чтобы пик давления расширяющихся при сгорании газов «держать» за ВМТ.

Холодный пуск дизельного двигателя не намного отличается от бензинового. Недостаток тепла в камере сгорания и, в связи с этим, плохие условия для испарения дизельного топлива компенсируются его большей цикловой подачей. Большее количество топлива (нужная концентрация паров за счёт увеличенной подачи топлива), его более ранний впрыск (1) и системы подогрева воздуха - штатные функции всех без исключения систем ускорения холодного пуска.

Таким образом, ПРИ ВПРЫСКЕ ТОПЛИВА В ТАКТЕ СЖАТИЯ В КАМЕРЕ СГОРАНИЯ НАБЛЮДАЮТСЯ ИЗМЕНЕНИЯ ТЕМПЕРАТУРЫ.

Появляется необходимость в корректировке УОВ дизельного топлива.

При испытании топливных насосов высокого давления на стенде необходимо пользоваться таблицами или картами заданных контрольных параметров. В них указываются условия, при которых испытываемый ТНВД должен соответствовать табличным данным.

ФУНКЦИИ ТНВД ТИПА VE, ЯВЛЯЮЩИЕСЯ ПРЕДМЕТОМ ВНИМАНИЯ

Исправность элементов, отвечающих за высокое давление;

Исправность элементов, отвечающих за давление в ТНВД;

Исправность элементов автомата опережения;

Производительность насоса;

Работа регулятора частоты вращения.

Эти показатели рассматриваются при заданных частотах вращения и полной нагрузке.

В 1978 году на ТНВД типа VE появилось отключаемое устройство регулирования начала подачи, зависящее от нагрузки.

Позже появились корректоры типа LFB (устройство изменения момента начала подачи топлива, в зависимости от нагрузки). Эти устройства предназначены для коррекции момента начала подачи топлива в зависимости от нагрузки для уменьшения шума и особенно эмиссии ОГ.

Что означает слово коррекция? Коррекция - внесение поправок в действие измерительных приборов, регуляторов и т. п. в зависимости от изменения условий их эксплуатации.

При проверке ТНВД проверяются корректоры по нагрузке и другие облагораживающие устройства.

Интересные результаты можно получить, сравнивая давление в ТНВД типа VE с корректором по нагрузке и без него на минимальных оборотах холостого хода. Так вот, с корректором давление в ТНВД на холостом ходу -1,5ч-2,0 bar, а без корректора - 2,5ч-3,8 bar. То есть поршень автомата опережения топливного насоса высокого давления без корректора уже находится в положении «раньше» с расчётом на увеличение цикловой подачи топлива.

Вы знаете, что давление в ТНВД типа VE влияет на изменение УОВ в динамике. Чем выше частота вращения вала-тем выше давление в топливном насосе и тем на большее расстояние перемещается гидравлический поршень автомата опережения - раньше впрыск.

ОСНОВНЫЕ ФУНКЦИИ КОРРЕКТОРА

Повышение давления в ТНВД при пуске;

Повышение давления в ТНВД при увеличении нагрузки;

Понижение давления в ТНВД при уменьшении нагрузки.

Давление в ТНВД изменяется в пределах 1 н-2 bar.

Это позволило:

Обеспечить более ранний впрыск дизельного топлива при пуске (тем самым улучшив его);

Уменьшить давление в ТНВД на холостом ходу и, как следствие, уменьшить шумность работы дизельного двигателя на этом режиме;

Варьировать между положениями «раньше» или «позже» в зависимости от нагрузки. При уменьшающейся нагрузке (от полной к частичной) и при неизменном положении педали подачи топлива, начало подачи смещается в положение «позже». С увеличением нагрузки - в положение «раньше». И, как результат, работа двигателя становится мягче, и уменьшается токсичность ОГ в режиме частичных нагрузок.

Признаюсь честно, что до четвёртого Слёта диагностов не задумывался об особенностях устройства муфты регулирования опережения впрыском рядных ТНВД. Мне казалось естественным понимание того, что угол опережения впрыска топлива зависит от многих факторов. В том числе, от частоты вращения коленчатого вала двигателя и нагрузки. При более тщательном рассмотрении вопроса регулирования УОВ всплыл вопрос: как именно осуществляется это регулирование? Ведь в конструкции рядного ТНВД предусмотрен только регулятор частоты вращения. Устройство по регулированию угла опережения впрыском вынесено за пределы ТНВД.

Так вот о муфте... Муфта - как муфта, ничего особенного: пружины, грузы. Состоит из двух подвижных относительно друг друга половин с одним центром (двигатель ОМ 602.911). И работает просто: чем выше частота вращения коленчатого вала-тем дальше от центра муфты перемещаются грузы и поворачивают вторую половину муфты (вместе с валом ТНВД) по ходу вращения - раньше впрыск топлива.

Подумалось о корректоре, но места, удобного для его монтажа, в этой муфте я не обнаружил. Сложное это мероприятие в рядном ТНВД - организовать корректирование УОВ по нагрузке. Но с появлением рядного ТНВД с дополнительной (регулирующей) втулкой это стало реальностью.

«...С помощью электроники появляется возможность ввести дополнительную (в сравнении со стандартным ТНВД) коррекцию регулирования работы дизеля. ...» (стр.177, Первое издание книги BOSCH «Системы управления дизельными двигателями», перевод с немецкого издательства «За рулем», 2004 год).

Этими примерами я хочу сказать, что конструктивно в элементах простых механических топливных насосов высокого давления, отвечающих за регулирование УОВ в динамике, учтены колебания температуры в камере сгорания двигателя, зависящие от количества впрыснутого в неё топлива. В своё время подобные решения вполне устраивали производителей автомобилей и покупателей.

Время идёт - всё меняется.

Считаю, что рассматривать все процессы, происходящие в камере сгорания двигателя, зависящие от частоты вращения, необходимо отдельно от процессов, происходящих при изменении нагрузки.

Для понимания сути происходящего. Разделить эти процессы нельзя.

Изменение количества рабочего тела влечет за собой изменение частоты вращения коленчатого вала. Даже в режиме нулевой нагрузки.

На стр. 58 Первого издания книги BOSCH «Системы управления дизельными двигателями», перевод с немецкого издательства «За рулем», 2004год, сказано: «...Оптимальные значения углов опережения впрыскивания меняются в зависимости от нагрузки на двигатель, что требует их регулирования. Необходимые величины устанавливаются отдельно для каждого типа двигателя и образуют поле характеристик, которое определяет момент начала впрыскивания в зависимости от нагрузки на двигатель, частоты вращения коленчатого вала и температуры охлаждающей жидкости...».

Тридцать восемь лет назад говорилось о регулировке УОВ в зависимости от частоты вращения коленчатого вала двигателя и от нагрузки. Возможности по организации оптимального горения топливовоздушной смеси в цилиндрах двигателя в то время были совсем иные, чем сегодня.

Владимир Белоносов

Первое и главное отличие дизельного агрегата от бензинового - это система зажигания или, другими словами, то, как топливо воспламеняется в двигателе.

В моторе, который использует дизельное топливо, воспламенение происходит от того, что солярка контактирует с нагретым от сжатия воздухом, который накапливается внутри цилиндра мотора.

Когда говорят о регулировке системы зажигания в дизельном моторе, под этими словами подразумевают процесс изменения угла опережения впрыск топлива, подающегося в конкретный момент - в самом конце сжатия воздуха.

Если угол установлен неправильно и заметно отличается от необходимых параметров, то впрыск топлива произойдет несвоевременно, что помешает нормальной работе двигателя и может вызвать самые печальные для дальнейшей эксплуатации последствия.

Также неправильно выставленный угол приводит к неполному сгоранию топлива в цилиндрах.

Существует такое понятие, как ранее или позднее зажигание .

Другими словами, система зажигания в дизельном моторе - это один из самых важных компонентов. За подачу топлива в таком двигателе отвечает специальный насос высокого давления - ТНВД.

Этот прибор вместе с форсунками и определяет дозировку солярки, которая подается в мотор.

Часто водителю приходится сталкиваться с тем, что необходимо своими собственными руками выставить зажигание, например, если необходимо заменить ремень ГРМ.

Во втором случае необходимость регулировки системы появляется в случае демонтажа топливного насоса.

При разборе топливной аппаратуры первым делом нужно обязательно запомнить все метки. Это можно легко сделать при помощи маркера или краски. Главное - поставить метки точно там, где они необходимы.

Благодаря этому сборка системы зажигания и топливной системы пройдет очень просто, а также это даст возможность в дальнейшем избежать осложнений с запуском мотора.

Регулировку системы зажигания можно проводить разными способами.

Первый метод - это установка угла точно по означенным меткам. Второй способ - постепенный подбор правильного положения регулировочной муфты.

В статье будут рассмотрены оба метода.

При самостоятельной установке угла по отметкам необходимо будет сместить насос для подачи топлива. Этот способ больше применим для дизельных моторов с механической аппаратурой подачи топлива.

Для того чтобы отрегулировать опережение впрыска, нужно плавно поворачивать приводную муфту насоса высокого давления вокруг оси.

Есть и другой вариант - это поворот шкива распредвала по отношению к ступице. Такие варианты регулировки подходят для конструкций, не имеющих жесткого крепления этих деталей.

Итак, регулируя зажигание на агрегате, первым делом нужно добраться до задней части мотора, найти там маховик и если требуется, освободить его от защитного кожуха. После этого необходимо найти стопор и установить его в специальную прорезь, но еще не стопорим моховик.

Когда это сделано, при помощи инструмента (ключа) надо начать прокручивать маховик. При вращении вместе с ним будет крутиться и коленчатый вал. Вращать нужно до того момента, пока маховик не застопорится.

После его остановки нужно обратить пристальное внимание на вал насоса. Если после вращение шкала на муфте привода заняла положение сверху, это означает, что метка, установленная на фланце топливного насоса, совместилась с нулевой отметкой на приводе.

Если метки совмещены, можно спокойно закручивать болты крепежа.

Однако если после всех процедур они расходятся, то требуется снова поднять стопор маховика и продолжить прокрутку коленчатого вала, контролируя при этом положение шкалы на приводе.

Если все сделано правильно, то после затягивания болтов крепления маховик освобождают от стопора и поворачивают коленчатый вал на 90°. После этого стопор снова размещают в пазе.

Теперь можно установить защиту маховика обратно и попробовать запустить двигатель. Если мотор начал работать, нужно проанализировать, как он это делает. Если все было выполнено без ошибок, то двигатель будет работать очень мягко, не прерываясь.

При втором методе регулировки зажигания угол выставляется опытным путем.

Допустим, если мотор не работает, тогда шкив насоса высокого давления медленно начинают прокручивать на некоторое количество зубьев относительно ремня ГРМ. После этой операции снова пробуют завести мотор. Если он работает спокойно, без стуков, то все хорошо.

При наличии явного стука можно попробовать еще крутануть шкив. Появление при запуске двигателя дыма будет означать, что выставлен поздний угол опережения.

В этом случае нужно провернуть шкив ровно на один зуб в сторону вращения.

После каждого этапа регулировки нужно пробовать зажигание и оценивать его работу.

Указанные выше методы выставления угла впрыска топлива на дизельном двигателе для многих автовладельцев не являются сложными, однако если все вышесказанное представляет для вас сложность, то обратитесь к хорошему мотористу и не обязательно, чтобы он работал в автосервисе.


Топливо в двигателе сгорает не мгновенно. У дизельного двигателя наилучшие мощностные и экономические показатели работы, если топливо сгорает при нахождении поршня около верхней мертвой точки .

Чтобы обеспечить выполнение этого требования, нужно чтобы угол опережения впрыска топлива подавал его с опережением , до прихода поршня в верхнюю мертвую точку.

Величину опережения подачи топлива в дизельном двигателе, выраженную в градусах угла поворота коленчатого вала, называют углом опережения впрыска .

У каждого дизельного двигателя, для главного режима работы, определенный угол опережения впрыска. При изменении угла опережения, снижаются мощностные и экономические показатели дизеля.

Величина угла опережения впрыска зависит от:

  • давления впрыска
  • химического состава топлива
  • температуры воздуха в конце такта сжатия
  • числа оборотов дизеля
  • количества подаваемого топлива.

Оптимальные условия сгорания

Если впрыскивать топливо в слишком рано, когда температура сжимаемого воздуха недостаточно высока, топливо будет плохо испаряться и часть его до самовоспламенения успеет осесть на стенках камеры. В этом случае горючее сгорает частично и работа дизеля ухудшается . Кроме того, из-за начавшегося сгорания топлива повышается давление газов в камере, которые будут противодействовать движению поршня, до прихода в верхнюю мертвую точку.

Работа дизеля ухудшается также и при слишком позднем впрыске . Топливо в этом случае сгорает при такте расширения , когда скорость сгорания понижается, а поверхность соприкосновения горячих газов со стенками цилиндра увеличивается. В этом случае много тепла будет отдано в охлаждающую воду и выброшено с отработавшими газами.

Чтобы форсунка впрыскивала с требуемым опережением, топливному насосу необходимо подавать горючее еще раньше , так как от момента начала подачи топлива насосом до впрыска из форсунки проходит некоторое время.

Угол, на который повернется коленчатый вал от положения, соответствующего началу подачи топлива насосом, до положения, при котором поршень придет в верхнюю мертвую точку, называют углом опережения подачи.

Угол опережения подачи топлива, больше угла опережения впрыска.
В конструкции или его привода предусматривается устройство, позволяющее изменять угол опережения подачи топлива.

Для каждого типа дизеля в зависимости от режимов работы, существуют подходящие значения угла опережения подачи топлива.



В такте впуска дизельный двигатель впускает только воздух. В такте сжатия этот воздух нагревается до температуры настолько высокой, что дизельное топливо, впрыснутое в цилиндр в конце такта сжатия, воспламеняется самостоятельно. Количество топлива в двигателе дозируется с помощью топливного насоса высокого давления (ТНВД). Топливо впрыскивается под высоким давлением через форсунку в камеру сгорания.

Впрыск топлива должен происходить следующим образом:

  • с точно дозированным количеством топлива в соответствии с нагрузкой двигателя;
  • в требуемый период времени;
  • в точно определенный период времени;
  • способом, соответствующим конкретному процессу сгорания.

Рис. Схема системы топливоподачи дизельного двигателя:
1. Топливный бак; 2. Топливоподкачивающий насос (топливный насос низкого давления); 3. Топливный фильтр; 4. Рядный ТНВД; 5. Устройство опережения момента впрыска; 6. Регулятор; 7. Держатель форсунки с форсункой; 8. Возвратный топливопровод; 9. Накальная свеча с закрытым элементом; 10. Аккумуляторная батарея; 11. Выключатель предварительного накала и стартера; 12. Блок управления предварительным накалом.

ТНВД и регулятор, соединенные с управляющей (контрольной) зубчатой рейкой являются ответственными за то, чтобы указанные условия выполнялись. Количество топлива, впрыснутого за один ход плунжера ТНВД, примерно пропорционально крутящему моменту двигателя.

Если на двигателе используется механический (центробежный) регулятор числа оборотов, то рейка управления соединяется с педалью акселератора («газа») через регулятор.

Рис. Замкнутый контур управления для механического регулятора:
1. Дизельный двигатель; 2. Рядный ТНВД; 3. Регулятор; 4. Обороты двигателя; 5. Количество впрыскиваемого топлива; 6. Педаль акселератора; 7. Ход управляющей рейки; 8. Давление подаваемого воздуха; 9. Желаемое число оборотов; 10. Атмосферное давление; 11. Управление крутящим моментом; 12. Подача при полной нагрузке; 13. Начальное количество.

У электронного регулятора (EDC) педаль акселератора оснащена датчиком, соединенным с электронным блоком управления (ЭБУ или ECU). Когда водитель нажимает на педаль газа, то перемещение преобразуется в соответствующий ход рейки с учетом оборотов двигателя в данный момент времени.

Почему дизельному двигателю нужен регулятор?

У дизельного двигателя не существует положения управляющей рейки, которое бы позволило дизельному двигателю точно поддерживать свои обороты без помощи регулятора. На холостом ходу, к примеру, без регулятора числа оборотов, обороты двигателя будут либо падать, пока двигатель не остановится, либо будут продолжать увеличиваться, что, в конце концов, приведет к саморазрушению двигателя.

Последняя возможность обязана тому, что дизель работает с избытком воздуха, что означает отсутствие эффективного дросселирования поступающей в двигатель смеси при возрастании его оборотов.

К примеру, если холодный двигатель был заведен и остался работать на холостом ходу, тогда как продолжает впрыскиваться начальное количество топлива, то характерное трение вскоре начнет снижаться. То же самое относится к нагрузке двигателя от приводимых от него агрегатов, таких как генератор, воздушный компрессор, ТНВД и т.д. Это означает, что если положение управляющей реики осталось неизменным и рейка не втягивалась для уменьшения количества подаваемого топлива (как сделал бы регулятор), то обороты двигателя будут возрастать все больше и больше (из-за указанного выше падения трения), пока они не достигнут точки саморазрушения. Другими словами, является обязательным, чтобы дизель был оснащен регулятором числа оборотов. В настоящее время для рядных ТНВД используются либо механические (центробежные) регуляторы либо система электронного управления дизельным двигателем (EDC).

Пневматические регуляторы, управляемые давлением впускного коллектора устанавливались ранее на небольшие ТНВД. От них пришлось отказаться в результате возросших требований к точности регулирования и к работе регулятора.

Нет сомнений, что когда к двигателю приложена нагрузка, ТНВД должен всегда обеспечивать двигатель необходимым количеством топлива. Все рядные ТНВД имеют отдельную плунжерную пару (плунжер (3) и гильза (1)), называемую еще нагнетательной секцией (элементом), для каждого цилиндра двигателя.

Плунжер двигается в направлении подачи топлива с помощью кулачкового вала, приводимого в движение от двигателя, и возвращается обратно под действием возвратной пружины. Так как ход плунжера не может быть изменен, то количество нагнетаемого топлива может быть отрегулировано только путем изменения эффективного (активного) хода плунжера.

Рис. Работа регулятора

Плунжеры снабжены наклонным спиральным вырезом (каналом), так что требуемый эффективный ход подбирается путем поворота плунжера. Поворот осуществляется с помощью управляющей зубчатой рейки (5), которая находится в зацеплении с плунжером и сама двигается продольно с помощью регулятора. Вращение плунжера перемещает спираль (вырез) (4) для управления моментом окончания подачи (известного также как сброс или открывание отверстия в гильзе) и количеством подачи. Подача начинается в тот момент, когда верхний край плунжера закрывает входное отверстие (2) в стенке гильзы.

В случае максимальной подачи (с) сброс не происходит вплоть до максимального эффективного хода плунжера, другими словами, с максимально возможным количеством подаваемого топлива. При частичной подаче (Ь) сброс происходит раньше в зависимости от положения плунжера при повороте. В конечном положении, что требуется для нулевой подачи (а), т.е. в момент, когда двигатель должен быть остановлен, продольный паз плунжера расположен прямо напротив входного отверстия. Это означает, что нагнетательная камера над плунжером соединяется с топливной магистралью в течение всего хода плунжера, т.е. топливо не подается.

Существует несколько различных конфигураций спирали.

В случае плунжера только с нижней спиралью (вырезом) подача топлива начинается в одинаковой точке хода плунжера вверх, тогда как конец подачи происходит раньше или позже в зависимости от поворота плунжера. Когда плунжер имеет верхнюю спираль (вырез), то может изменяться начало подачи. Имеются также плунжеры, снабженные как верхней, так и нижней.

Снижение оборотов регулятора

Каждый двигатель имеет кривую (характеристику) крутящего момента в соответствии с его максимальной отдачей мощности. Каждое значение оборотов двигателя связано с данным максимальным крутящим моментом. Если нагрузка на двигатель снимается при данных оборотах двигателя, а управляющая рейка соответствующим образом не регулируется, то обороты двигателя могут лишь увеличиваться в пределах управляемого диапазона до числа, определенного заводом-изготовителем двигателя (т.е. от nv — оборотов при полной нагрузке до n1 — низких оборотов холостого хода). Увеличение оборотов двигателя пропорционально изменению нагрузки, т.е. чем больше уменьшение нагрузки двигателя, тем больше увеличение оборотов двигателя.

Этот эффект известен как эффект снижения оборотов и относится к регуляторам с характеристикой снижения оборотов. Снижение оборотов регулятора в основном относится к максимальным оборотам при полной нагрузке (нормированные обороты) и подсчитывается следующим образом:

б = (n10-nv0) / nv0 или б (n10-nv0) / nv0 * 100%

где б — коэффициент снижения оборотов, его называют также просто снижением оборотов); n10 — повышенных оборотов холостого хода (максимальных); nv0 — число максимальных оборотов при полной нагрузке.

Говоря в общем, достаточно большое снижение оборотов увеличивает стабильность общего контура (цепи) управления (регулятор, двигатель и приводимый им в движение агрегат или автомобиль). С другой стороны, снижение оборотов ограничивается условиями работы. Для примера: примерно от 0 до 5% — для двигателей генераторных установок и примерно от 6 до 15% — для автомобильных двигателей.

Рис. Обороты при полной нагрузке с соответствующим управлением оборотами холостого хода:
1. Крутящий момент Md; 2. Обороты двигателя.

Рис. Увеличение оборотов для различных снижений оборотов:
1. Крутящий момент Md; 2. Обороты двигателя; слева — малое снижение оборотов; справа — большое снижение оборотов.

Рис. Снижение оборотов регулятора R Q V:
1. Снижение оборотов; 2. Обороты ТНВД

На рисунках введены следующие обозначения:

  • nvu — минимальные обороты при полной нагрузке,
  • nu — любое значение оборотов при полной нагрузке,
  • nv0 — максимальные обороты при полной нагрузке,
  • n — низкие обороты на холостом ходу,
  • n1 — любое значение оборотов на холостом ходу.
  • n10 — повышенные обороты холостого хода (максимальные).

На рисунке показана практическая иллюстрация эффектов снижения оборотов. При установке требуемых оборотов двигателя на фиксированной величине, действительное число оборотов двигателя изменяется в пределах области снижения оборотов, когда нагрузка двигателя изменяется.

Рис. 1. Крутящий момент Md; 2. Обороты двигателя, n; 3. Диапазон снижения оборотов; 4. Максимальная разница в оборотах; 5. Реальные обороты; 6. Полная нагрузка; 7. Частичная нагрузка; 8. Отсутствие нагрузки; 9. Время t; 10. Установочные обороты.

Функции регулятора

Основной задачей каждого регулятора числа оборотов является ограничение максимальных оборотов двигателя. Другими словами, регулятор должен обеспечивать, чтобы обороты двигателя никогда не превышали максимальных значений, предусмотренных заводом-изготовителем. В зависимости от его типа, регулятор может иметь и другие функции, такие как поддержание определенных оборотов двигателя, например, на холостом ходу или поддержание диапазона оборотов между низкими и высокими оборотами холостого хода (максимальными). Регулятор может также иметь другие функции и функции, выполняемые электронным регулятором (EDC), являются гораздо более широкими, чем функции у механического (центробежного) регулятора.

Различные требования, предъявляемые к регуляторам, стали причиной развития различных типов регуляторов, перечисленных ниже:
регуляторы максимальных оборотов. Эти регуляторы разработаны только для ограничения максимальных оборотов двигателя;
регуляторы минимальных и максимальных оборотов.

Кроме максимальных оборотов эти регуляторы также управляют низкими оборотами холостого хода, регуляторы изменяемых оборотов. Эти регуляторы кроме максимальных оборотов и низких оборотов холостого хода также управляют оборотами в промежуточной области, комбинированные регуляторы. Они представляют собой комбинацию регулятора максимальных и минимальных оборотов и регулятора изменяемых оборотов, регуляторы для стационарных силовых установок. Они разработаны для двигателей генераторных установок в соответствии с немецким стандартом DIN 6280. Кроме своей основной задачи, этот регулятор также имеет несколько других функций управления. Они включают в себя автоматическую подачу и отсечку дополнительного топлива, требуемого для запуска и изменение подачи топлива при полной нагрузке в зависимости от оборотов двигателя (управление крутящим моментом), от давления нагнетаемого воздуха или атмосферного давления. Для выполнения этих задач требуется дополнительное оборудование.

Рис. Регулировка максимальных оборотов:
1. Ход управляющей рейки; 2. Остановка; 3. Полная нагрузка; 4. Контролируемая область; 5. Полная нагрузка; 6. Без нагрузки; 7. Обороты двигателя.

В зависимости от снижения оборотов, когда нагрузка на двигатель убирается, то максимальные обороты при полной нагрузке nv0 не достигают величины n10 (повышенные обороты холостого хода — максимальные). Регулятор подгоняет их до этого требуемого значения, передвигая управляющую рейку в направлении остановки (прекращая подачу топлива). Управление (регулировка) в области между nvo и пю называется регулировкой максимальных оборотов. Чем выше снижение оборотов, тем выше увеличение оборотов между nvo и n10.

Когда требуется специальное применение (например, в автомобилях с коробкой отбора мощности), то регулятор может поддерживать обороты двигателя в пределах требуемой области (2) между оборотами холостого хода и повышенными оборотами холостого хода (максимальными), (1 — ход управляющей рейки).

Рис. Регулировка промежуточных оборотов

Обороты двигателя (5), таким образом, колеблются только в пределах рабочей области между nv. (полная нагрузка-3) и n1 (без нагрузки-4) в зависимости от нагрузки.

Регулирование может также иметь место и в самой низкой области оборотов двигателя.

Рис. Управление низкими оборотами холостого хода: 1. Ход управляющей рейки; 2. Область управления; 3. Полная нагрузка; 4. Без нагрузки; 5. Обороты двигателя.

После запуска холодного двигателя, когда управляющая рейка перемещается из пускового положения в положение В, сопротивление двигателя на трение остается достаточно высоким, Это значит, что количество подаваемого топлива для устойчивой работы двигателя будет немного выше того, которое обычно соответствует регулировочной точке L для низких оборотов холостого хода, а обороты двигателя будут немного ниже. При прогреве уменьшение трения будет причиной увеличения оборотов двигателя, и управляющая рейка передвинется обратно в положение L. Это установка низких оборотов холостого хода для двигателя, находящегося при рабочей температуре.

Управление крутящим моментом

Управление крутящим моментом используется для обеспечения полного использования воздуха для сгорания, поступившего в цилиндр двигателя. В таком случае процесс управления не актуален, но на регулятор накладывается более одной функции регулировки. Он разработан для количества топлива, подаваемого для режима полной нагрузки, т.е. для максимального количества топлива, впрыскиваемого в области нагрузок двигателя и которое может сгореть без чрезмерного дымообразования. В общем, потребность в топливе «атмосферного» (т.е. без наддува) дизельного двигателя снижается с ростом оборотов двигателя (уменьшенная относительная скорость воздушного потока, ограничения по температуре, изменяемое смесеобразование). С другой стороны, при постоянном положении управляющей рейки количество топлива, впрыскиваемого ТНВД, увеличивается в определенной области, когда обороты возрастают. Это происходит из-за эффекта дросселирования у отверстия для сброса (сливного отверстия) плунжерной пары ТНВД. Однако впрыскивание избыточного топлива приводит к выбросам дыма и перегреву двигателя. Это означает, что количество впрыскиваемого топлива должно быть адаптировано к потребности двигателя в топливе.

Рис. а) Потребность двигателя в топливе; б) Подача топлива в режиме полной нагрузки без управления крутящим моментом; с) Подача топлива в режиме полной нагрузки с управлением крутящим моментом; 1. Количество подаваемого топлива; 2. Начало управления крутящим моментом; 3. Конец управления крутящим моментом; 4. Область управления крутящим моментом; 5. Обороты двигателя.

У регуляторов числа оборотов с управлением крутящим моментом управляющая рейка передвигается в области управления крутящим моментом на фиксированную величину (так называемый ход управления крутящим моментом) в направлении остановки (отсечки подачи топлива). Таким образом, когда обороты возрастают (от n1, до n2), количество подаваемого топлива уменьшается (принудительное управление крутящим моментом или управление крутящим моментом в направлении управления). Когда обороты двигателя падают (с n2 до n1), подача увеличивается.

Рис. 1. Управление ходом рейки; 2. Начало управления крутящим моментом; 3. Конец управления крутящим моментом; 4. Ход управления крутящим моментом; 5. Обороты двигателя.

Конструкция и расположение приборов для управления крутящим моментом изменяются в соответствии с типом регулятора. Кривая крутящего момента с и без управления крутящим моментом показана на рисунке. Максимальный крутящий момент достигается во всем диапазоне показанных оборотов без превышения пределов дымности.

Рис. 1. Крутящий момент двигателя Md; 2. Начало управления крутящим моментом; 3. Конец управления крутящим моментом; 4. С управлением крутящим моментом; 5. Без управления крутящим моментом; 6. Обороты двигателя.

На двигателях, оснащенных турбонагнетателем с приводом от выхлопных газов, имеющих высокий коэффициент наддува, потребность в топливе на режиме полной нагрузки в областях низких оборотов возрастает настолько, что стандартное увеличение подачи топлива от ТНВД становится недостаточной. В таких случаях управление крутящим моментом должно регулироваться в зависимости от оборотов двигателя или давления нагнетаемого воздуха.

В зависимости от преобладающих условия это осуществляется с использованием либо регулятора, либо компенсатора давления во впускном коллекторе (LDA) или обоих этих устройств.

Рис. Характеристики подачи топлива:
а) Потребность двигателя в топливе; б) Подача в режиме полной нагрузки без управления крутящим моментом; с) Подача в режиме полной нагрузки с управлением крутящим моментом; c1 — отрицательное (свободное) управление крутящим моментом; с2 — принудительное (положительное) управление крутящим моментом; 1. Количество подаваемого топлива; 2. Управление крутящим моментом; 3. Отрицательное; 4. Положительное; 5. Обороты двигателя.

После замены ремня ГРМ или топливного насоса высокого давления (ТНВД) на дизельном двигателе часто возникает проблема с поиском меток, по которым необходимо выставить шкив ТНВД. Его неверное положение приводит к несвоевременной подаче топлива и неправильной работе двигателя. Чтобы избежать этого, следует действовать проверенным способом.

Спонсор размещения P&G Статьи по теме "Как выставить момент впрыска на дизеле" Как сделать подогрев для двигателя своими руками Как удалить воздух из системы охлаждения Калины Как проверить дмрв на ваз 2110

Инструкция

Прежде всего открутите от форсунки первого цилиндра двигателя трубку высокого давления. Наденьте на нее прозрачную пластиковую трубку так, чтобы она была направлена вверх, и было хорошо видно уровень топлива, заполняющего ее. Трубка должна хорошо держаться на форсунке. Чтобы ее закрепить, используйте винтовой хомут. Топливо не должно протекать!

Снимите ремень газораспределительного механизма...

1 0

Принцип общий для всех дизельных движков будь это БМВ, АУДИ, ФВ, трактор или что-нибудь другое.

Здесь я приведу два оригинальных текста и мои пояснения. К сожалению писал на форум, поэтому комменты не в 3 лице.

Текст №Раз

Последовательность проверки угла (момента) начала подачи топлива: очистить от грязи и пыли корпус горловины для заливки масла и счетчик моточасов, а также место присоединения трубки высокого давления первого цилиндра к топливному насосу;
установить поршень первого цилиндра в положение соответствующее окончанию такта сжатия (для этого включают декомпрессионный механизм и, вращая коленчатый вал, совмещают метки на крышке распределительных шестерен и ведущем шкиве привода вентилятора: при применении насоса УТН с пятой от ВМТ риской метки “Т”, при применении насоса НД-21/4 со второй, при применении насоса НД-21/2 с первой);
снять корпус маслозаливной горловины вместе с мотосчетчиком и отъединить шлицевой фланец от шестерни топливного...

0 0

Сам ты его не выставишь! можешь даже и не стараться!
на своем опыте тебе скажу!

лучше поищи толковых мастеров!

а для подтвержения моих слов...вот тебе совет:

Динамический угол измеряется специальным профессиональным стробоскопом во время работы двигателя на ХХ (740 об/мин). Регулируется, естественно, на остановленном и проверяется снова на запущенном.Если надо, то регулировка повторяется, пока не получен нужный результат. Профессиональные стробоскопы мало у кого имеются, так что ничего удивительного, что у Ваших мастеров его нет. Его нет и у нас - слишком дорогая штука. Поэтому и существует метод настройки опережения в статике, т.е. на неподвижном моторе. В статике опережение на Вашем моторе должно быть 24 градуса до ВМТ. Существует две технологии настройки опережения в статике.
1 - капельный метод. Из ТНВД изымается нагнетательный клапан 1 цилиндра. Штуцер нагнетательного клапана возвращается на свое место и на него одевается кусок трубки высокого...

0 0

О том, что опережение впрыска топлива для дизельных двигателей очень важно, объяснять никому не надо. Естественно, для каждой частоты вращения двигателя оптимальным будет какое-то определенное значение угла опережения, например, для холостого хода 800 об/мин – это 3°, 1000 об/мин - 4°, 1500 об/мин - 5° и т.д. Для достижения такой зависимости, которая, кстати, не является линейной, в корпусе ТНВД есть специальный механизм. Впрочем, это просто поршень (иногда в литературе его именуют таймером), который перемещается внутри ТНВД давлением топлива и через специальный поводок на тот или иной угол разворачивает специальную шайбу с волновым профилем. Будет поршень задвинут дальше – волна шайбы чуть раньше набежит на плунжер, тот начнет движение и раньше начнет подавать топливо к форсунке. Другими словами, угол опережения впрыска зависит от давления топлива внутри корпуса ТНВД и от степени износа волнового профиля шайбы. С давлением топлива, как правило, никаких проблем не бывает. Ну, разве...

0 0

Пользователь

Житель форума


Регистрация: 07.07.2013

Адрес: г. Орел

Марка: Jeep Cherokee, г.в. 1993, 4L, AW4 30-40LE, NP242J, и бусик Hyundai Grace H-100,1995 г.,D4BX, диз.

Возраст: 61

Сообщений: 1,162

Загрузки: 0

Закачек: 0

Все правильно для механического ТНВД "Бош" или его клону "Зиксель Кики", разве что трубки высокого давления надо ослаблять до предела, а лучше снять. В противном случае с силой приходится вращать насос в ту или иную сторону, а из-за этого трубки потом находятся в однобоком напряжении, а с учетом того, что трубки испытывают вибрацию сами по себе при импульсах движения топлива под давлением 127 кг/см, то это чревато в дальнейшем возникновению на них микротрещин, которые заварить не всегда удачно удается, я пробовал, знаю. Размер подъема плунжера ТНВД Бош как правило на всех одинаковый и зависит от объема двигателя, например для 1,6 л. турбо он равен 0,75...

0 0

Как выставить момент впрыска
на дизеле.

Бывает, что после замены ремня газораспределительного механизма (ГРМ) или топливного насоса (ТНВД) на дизеле, трудно найти метки, по которым нужно выставить шкив ТНВД для обеспечения своевременной подачи топлива. Как быть?

Можно, конечно, попытаться "поймать" необходимое положение шкива топливного насоса методом "научного тыка", т.е. поставить в одно положение и попробовать завести двигатель.

Не завёлся - провернуть шкив ТНВД на 3-5 зубьев относительно зубчатого ремня в любую сторону и попробовать вновь.

Завёлся, но сильно стучит - ранний впрыск, значит необходимо провернуть шкив на 1-2 зуба против направления вращения и снова запустить двигатель.

Завёлся, но дымит и работает очень мягко - поздний впрыск, надо провернуть шкив насоса на 1 зуб по направлению его вращения.

После того, как перестановкой ремня уже нельзя добиться точной регулировки надо ослабить гайки крепления ТНВД и поворотами...

0 0

Проверка и регулирование угла опережения подачи или впрыска топлива на двигателе

Соединительные метки на деталях привода поставлены для нового насоса и двигателя. В процессе работы плунжерные пары и шестерни изнашиваются и угол опережения впрыска изменяется. Следовательно, после соединения по меткам у насоса надо обязательно проверить фактический угол, опережения впрыска и, если потребуется, подкорректировать его при помощи регулировочного устройства в механизме привода. Номинальные значения углов опережения впрыска приведены в таблице 9. Углы опережения непосредственно замерить сложно. Поэтому для каждого двигателя даются вспомогательные величины (например, длина дуги окружности приводного шкива вентилятора), доступные для измерения.

По аналогии с регулировкой насоса на стенде угол опережения впрыска топлива на дизеле определяют по моменту начала подачи и по моменту начала впрыска топлива.

У большинства дизелей при проверке угла оперен;е-ния по моменту начала подачи...

0 0

Проверка и регулировка угла опережения впрыска топлива ЯМЗ-238

Для регулировки угла опережения впрыскивания топлива на картере маховика предусмотрены два люка (см. рис. 1), а на маховике в двух местах нанесены значения углов. Для нижнего указателя 3 эти значения выполнены на маховике в цифровом выражении, а для бокового указателя 4 – в буквенном выражении, при этом, букве "А" соответствует значение в цифровом выражении 20°; букве "Б"-15°; букве "В"-10°; букве "Г"- 5°.

Вращать коленчатый вал двигателя по часовой стрелке (если смотреть со стороны вентилятора) до совмещения меток на шкиве коленчатого вала и крышке шестерен распределения или на маховике с указателем, соответствующих установочному углу опережения впрыскивания топлива –...

0 0

Установка угла опережения впрыска топлива. Все, что нужно знать Не малое количество современных автомобилей умеют ездить на дизеле и поэтому многие автолюбители хотят знать о такой процедуре как - установка угла опережения впрыска топлива. Определение и его правильная установка имеет краеугольное значение для качественной работы дизельного движка. Тут стоит заметить тот факт, что определенная частота вращения имеет свой собственный, универсальный.

Существуют уже устоявшееся показатели, так, например, для 800 оборотов в минуту, а это холостой ход, угол опережения будет равен 3 градусам, для 1000 оборотов он увеличивается до 4 градусов, при 1500 становится уже 5 градусов.


Вопреки расхожему мнению данная зависимость не является линейной, что можно проследить на показанном выше примере. Для выставления самого оптимального угла для данного крутящего момента в ТНДВ устанавливается механизм, хотя если быть точными, то это самый простой поршень, который иногда зовут таймером. Его...

0 0

10

1 Система зажигания двигателя – отличие «дизеля» от бензинового мотора

Из-за указанных различий в самом процессе воспламенения бензинового и дизельного топлива в двигателе, можно отметить разницу и в строении зажигания. Очевидно хотя бы то, что такой системы, как в бензиновом авто, состоящей из прерывателя-распределителя, коммутатора или же датчиков импульсов, в дизельной машине нет. Однако зимой иногда с трудом удается завести дизельный движок, из-за того, что воздух слишком холодный, поэтому устанавливают специальную систему предварительного подогрева, чтобы увеличивать температуру воздуха в камере сгорания.

Можно сказать, что установка зажигания на дизельном двигателе – это не что иное, как выбор угла опережения впрыска горючего. А достигается это регулированием положения поршня, в момент впрыскивания «дизеля» в цилиндр. Это очень важно, так как при неправильном выборе угла впрыскивание будет несвоевременным, и, как следствие, топливо не будет сгорать до конца....

0 0

11

Свечи накала

Любой форкамерный дизель, для устойчивого запуска оснащён свечами накала. Главная их задача прогреть воздух и форкамеру перед запуском двигателя. После того как дизель запустился, свечи в работе дизельного двигателя не участвуют. В некоторых европейских и японских дизелях свечи всё таки работают постоянно или прерывисто до прогрева двигателя и на горячую но это нужно не для устойчивой работы, а для уменьшения вредных выбросов. Если Ваш форкамерный дизель не запускается, то в 90 случаев из 100 виноваты свечи или реле накала. Самый простой способ проверки свечей – отсоединить от вывода свечи провода от реле и коснуться этого вывода проводом от плюса аккумулятора. Главное правило – касаться надо кратковременно так как напряжение аккумулятора 12 – 13 вольт, а напряжение подаваемое на свечи иногда не превышает шести вольт. При наличии...

0 0

© 2024 bugulma-lada.ru -- Портал для владельцев автомобилей