Характеристика воздушно-механической пены. Приборы и аппараты для получения воздушно-механической пены В чем достоинства воздушно механической пены

Главная / ПДД онлайн

Осуществлять подачу воздушно-механической пены можно как с установкой, так и без установки пожарных автомобилей на водоисточник (от ёмкостей пожарных автоцистерн). В любом случае подача воздушно-механической пены через воздушно-пенные стволы (ГПС-600, СВП, СПП, УКТП «Пурга», СРВД 2/300 и лафетный ствол) выполняется в следующей последовательности:

§ произвести забор и подачу воды в рукавную линию к воздушно-пенному стволу (стволам), как при подаче в водяные стволы (см. главу 11.1);

§ увеличив обороты двигателя, создать минимальный напор на выходе из насоса нормального давления 60 м вод. ст. (при подаче воздушно-пенных стволов ГПС-600, СВП, СПП, лафетного) или 80 м вод. ст. (при подаче стволов УКТП «Пурга»), а из насоса высокого давления 300 м вод. ст. Напор может быть увеличен в зависимости от длины рукавных линий. При заборе и подаче воды из гидранта водопроводной сети (вода поступает в насос из водопровода под избыточным давлением) оборотами двигателя и вентилями пожарной колонки (при необходимости прикрывая вентили пожарной колонки уменьшить подачу воды в насос) установить перепад давлений между напорной и всасывающей полостями насоса (по манометру и мановакуумметру) 5-6 кгс/см 2 ; например давление по манометру 7 кгс/см 2 , а по мановакуумметру 1,0 кгс/см 2 ;

§ установить дозатор пеносмесителя в требуемое положение, в соответствии с типом и количеством подаваемых воздушно-пенных стволов или с требуемой концентрацией водного раствора пенообразователя (см. раздел 3). При подаче воздушно-механической пены через УКТП «Пурга» установить требуемое положение дозатора в соответствии с таблицей 11.1. При наличии на пожарном насосе ручного дифференциального дозатора (некоторые образцы насосов "Ziegler"), а также при совместной работе с автомобилем пенного тушения, оборудованного таким дозатором, установить расход согласно таблице Приложения 8.

§ открыть кран от пенобака к пеносмесителю.

Подача пенообразователя в пеносмеситель также может производится из посторонней ёмкости (например из бочки с пенообразователем). В этом случае необходимо отвернуть заглушку на трубопроводе, соединяющем пеносмеситель с ёмкостью для пенообразователя, и присоединить к штуцеру шланг (шланг входит в комплектацию пожарного автомобиля). Свободный конец шланга опустить в ёмкость с пенообразователем и выполнить все операции по подаче воздушно-механической пены. При этом, в случае забора воды из открытого водоисточника, необходимо обеспечить плотное закрытие дозатора. В противном случае в насос вместо воды будет подсасываться только один пенообразователь.

Таблица 11.1

С целью рационального использования запаса огнетушащих средств пожарной автоцистерны, подачу воздушно-механической пены без её установки на водоисточник можно производить в следующей последовательности:

§ установить автоцистерну на место работы;

§ включить стояночную тормозную систему (при необходимости подложить упоры под колёса автомобиля);

§ присоединить к напорному патрубку насоса рукавную линию с воздушно-пенным стволом (стволами);

§ включить дополнительную трансмиссию привода пожарного насоса и выключить сцепление дополнительными органами управления из насосного отсека (для пожарных автомобилей с насосом заднего расположения);

§ проверить плотность закрытия всех вентилей и кранов пожарного насоса;

§ открыть задвижку «из цистерны»;

§ открыть одну из напорных задвижек для выпуска воздуха и после заполнения насоса водой закрыть её;

§ открыть пробковый кран (кран эжектора) пеносмесителя;

§ установить дозатор пеносмесителя в требуемое положение (в соответствии с типом и количеством подаваемых воздушно-пенных стволов);

§ открыть кран от пенобака к пеносмесителю;

§ включить сцепление или КОМ привода пожарного насоса (для пожарных автомобилей с насосом среднего расположения);

§ увеличив обороты двигателя довести давление воды в насосе до 2…3 кгс/см 2 , контролируя его величину по манометру;

§ плавно открывая напорную задвижку насоса и одновременно увеличивая обороты двигателя, установить необходимый напор насоса: 60…70 м вод. ст. – при подаче стволов ГПС-600, СВП, СПП, или 80…90 м вод. ст. при подаче стволов УКТП «Пурга».

При работе пожарного насоса по подаче воздушно-механической пены осуществлять постоянный контроль за уровнем пенообразователя и производить операции, как при работе пожарного насоса по подаче воды (см. главу 11.1).

По завершении подачи воздушно-механической пены или пенообразователя в пенобаке, закрыть кран от пенобака к пеносмесителю, и осуществить промывку пеносмесителя и насоса водой в следующей последовательности:

Открыть кран подачи воды из цистерны в пеносмеситель, или переключить магистраль подачи пенообразователя на подсос (подвод) воды из постороннего водоисточника (ёмкости);

Установить рукоятку дозатора на максимальное положение (например, дозатор пеносмесителя ПС-5 на цифру «5») и поработать насосом не менее 2…3 мин., проворачивая при этом рукоятку дозатора и пробковый кран (кран эжектора) пеносмесителя.

Завершив промывку пеносмесителя и насоса необходимо уменьшить обороты двигателя, закрыть кран подачи воды из цистерны в пеносмеситель (или отключить магистраль подвода воды в пеносмеситель из постороннего водоисточника), установить рукоятку дозатора и пробковый кран (кран эжектора) пеносмесителя в исходное положение и произвести операции, как при завершении подачи воды пожарным насосом (см. главу 11.1).


Вылетом называется горизонтальное расстояние от проекции вершины стрелы на грунт до оси вращения башни.

Автомобили АПС иногда имеют заводское обозначение ПСА (пожарно-спасательный автомобиль).

Виды и сроки проведения технических обслуживаний пожарных автомобилей указаны в главе 7.2.

Исключение составляют внедорожные автомобили, для которых движение на малой скорости при высокой нагрузке на двигатель является штатным режимом эксплуатации.

Устройство, работа и эксплуатация пеносмесителей рассматриваются в главах 3.4, 3.6 и 3.7.

В отличие от генераторов пены серии ГПС, для которых числовое обозначение соответствует производительности по пене в литрах в секунду, для УКТП «Пурга» в обозначении указывается секундный расход раствора пенообразователя. Например, «Пурга-20.40.60» имеет производительность по раствору 60 л/с.

Тарировка дозатора проводится по воде

При работе на загрязнённой воде или при длительной работе на режиме, близком к номинальному (давление в насосе более 0,8 МПа), целесообразно через каждые 20-30 минут поворачивать маслёнку на полоборота.

Допускается применять также Солидолы С (смазки УС или УС-1) по ГОСТ 1033-**, смазки "1-13" по ГОСТ 1631-**, и ЦИАТИМ-221 по ГОСТ-9433-**.

При работе на загрязнённой воде или в случае вынужденного применения вместо солидолов других смазок, не обладающих необходимой водостойкостью (например, ЦИАТИМ-201, -203, Литол-24), подпрессовку уплотнительного стакана необходимо производить поворотом колпачковой маслёнки на 1 оборот через каждые 20 минут работы насоса.

Неисправность характерна для автоцистерн моделей 63Б,137А, 153

На модели АВС-02Э и последних моделях АВС-01Э вакуумный клапан (поз 4 на рис. 3.28) не устанавливается.

Вакуумный насос АВС-02Э обеспечивает работу вакуумной системы только в ручном режиме.

Устройство ствола распылителя СРВД-2/300 рассматривается в главе 5.1

Порядок работы без воды для осушения насоса методом "сухой" прокрутки описан ниже.

На автомобилях, где включение привода производится только из кабины водителя, следует быстро перейти к насосному отсеку и выключить сцепление, после чего производить забор воды.

Допускается использовать трансмиссионные масла тех марок, которые применяются в пожарном автомобиле

Для тарировки электронного блока (а также в качестве резервного) используется эталонный датчик концентрации.

Слово "вода" не упоминается, т.к. бачок в зимнее время заправляется анитфризом (например, Тосолом А-40) или рекомендованной заводом-изготовителем специальной смесью (эмульсией), состоящей из 80% воды и 20% глицерина.

Для рукавов диаметром 89 мм рабочее давление составляет 1,4 МПа, для рукавов диаметром 150 мм – 1,2 МПа.

В пожарной охране Санкт-Петербурга, кроме того, кольцевыми полосками по всей окружности рукава обозначают категорию годности от первой (одна полоска) до третьей (три полоски).

Значения указаны при давлении воды перед гидроэлеватором 8±0,2 кгс/см 2 и давлении непосредственно после гидроэлеватора не менее 1,7 кгс/см 2 , погруженного на глубину 5±10 см.

В пожарной охране укоренилось условное разделение ручных стволов на две внесистемных группы: стволы "А" (работающие от рукавной линии Ø 77 мм и имеющие расход около 7 л/с) и стволы "Б" (линия Ø 51 мм, расход 2…3,5 л/с).

При установке колонки на гидрант необходимо чтобы вентили напорных патрубков колонки были закрыты. В противном случае блокировка торцевого ключа не позволит навинтить колонку на гидрант.

Напорно-всасывающий рукав применяется в том случае, если иным способом нельзя исключить перегибы напорного рукава на входе в горловину цистерны.

Электромагнитная обстановка в регионе определяется электромагнитной совместимостью радиоэлектронных средств, применяемых в данном регионе.

Автомобильный аккумулятор в комплект радиостанции не входит

Рабочая частота для любого из каналов может программироваться при помощи компьютера.

Режим сканирования – автоматическое переключение приёмника по определённым (заданным) каналам связи.

Активный канал – канал радиосвязи, в котором в данный момент одна из радиостанций находится в режиме передачи

При снижении показателей герметичности насоса необходимо выявить места неплотностей путём опрессовки насоса: водой на неработающем насосе за счёт создания в нем давления до 0,6 МПа от другого насоса или водой на работающем насосе созданием в нем давления до 1,2-1,3 МПа при закрытых напорных задвижках. Можно (при наличии соответствующей оснастки) опрессовать неработающий насос воздухом под давлением 0,2-0,3 МПа, предварительно покрыв места возможных утечек мыльной пеной.

При проведении ТО-1000 на СТО неисправности узлов и агрегатов шасси, возникшие в период гаранитйного срока, устраняются тоже на СТО, а при проведении этого ТО в пожарной части вопросы гарантийного ремонта решаются на основании Акта рекламации уже не с заводом-изготовителем шасси, а с организацией-поставщиком пожарного автомобиля. Это, как правило, требует несоизмеримо бóльших затрат времени.

В приложении 5 приведены для примера карты смазки автоцистерны АЦ-40 модели 63Б и шасси ЗИЛ-431410.

НПБ 181-99 "Автоцистерны пожарные и их составные части. Выпуск из ремонта. Общие технические требования. Методы испытаний.", НПБ 195-00 "Автолестницы пожарные и их составные части. Выпуск из ремонта. Общие технические требования. Методы испытаний.", НПБ 198-01 "Автоподъемники пожарные и их составные части. Выпуск из ремонта. Общие технические требования. Методы испытаний." и др.

Строго говоря, надбавка может быть и 5%, и 7%, поскольку всё это входит в понятие "до 10%". Но на практике, как правило, принимается максимальная величина.

ЕДДС-единая дежурно-диспетчерская служба; ЦУС-центр управления силами; ЦППС-центральный пункт пожарной связи.

Если ремонт производился без остановки двигателя.

При неисправном спидометре АБС не работает.

Если заболоченный участок имеет ширину (до чистой воды) 12-15 метров, а высота всасывания невелика (2-3 м), можно забрать и подать воду через три или даже четыре всасывающих рукава (при наличии второго комплекта рукавов с другого автомобиля). Это имеет смысл в тех случаях, когда требуемый для тушения пожара расход воды превышает возможности гидроэлеватора. Существует также способ забора воды через присоединённую к стандартному водосборнику линию из 6-ти напорно-всасывающих рукавов Ø75 мм с всасывающей сеткой СВ-80 (входящей в комплектацию мотопомпы МП-800Б). В этом случае водоотдача пожарного насоса типа ПН-40 составляет для высоты всасывания 1,5 – 2 м около 15 л/с.

Максимальный напор в противопожарном водопроводе низкого давления не превышает 60 м.

Дифференциальный дозатор обеспечивает бесступенчатую регулировку количества пенообразователя с указанием его расхода по шкале (лимбу), проградуированной в л/с (литрах в секунду).

Для пожарных автомобилей с насосом типа НЦПВ 4/400 промывку пеносмесителя и насоса водой следует выполнять только из постороннего водоисточника (гидранта водопроводной сети), т.к. в цистерне может присутствовать достаточно большое количество пенообразователя, попавшего туда через перепускной трубопровод (см. главу 3.6).

Пена – наиболее эффективное и широко применяемое огнетушащее вещество изолирующего действия, представляет собой коллоидную систему из жидких пузырьков наполненных газом В.В. Теребнев, Тактика тушения пожаров. Часть 1. Основы тушения пожаров: Учебное пособие. – М.: КУРС, 2016. 256 стр. – Пожарная безопасность. .

Другие определения:
Пена : Дисперсная система, состоящая из ячеек - пузырьков воздуха (газа), разделенных пленками жидкости, содержащей пенообразователь. ГОСТ Р 50588-2012 «Пенообразователи для тушения пожаров. Общие технические требования и методы испытаний»


Воздушно-механические пены (ВМП) средней и высокой :

  • хорошо проникают в помещения, свободно преодолевают повороты и подъемы;
  • заполняют объемы помещений. вытесняют нагретые до высокой температуры продукты сгорания (в том числе токсичные), снижают температуру в помещении в целом, а так же строительных конструкций и т.п.;
  • прекращают пламенное горение и локализуют тление веществ и материалов, с которыми соприкааются;
  • создают условия для проникновения ствольщиков к очагам тления для дотушивания (при соответствующих мерах защиты органов дыхания и зрения от попадания пены) Теребнев В.В., Смирнов В.А., Семенов А.О., Пожаротушение. (Справочник), 2-е издание. – Екатеринбург: ООО «Издательство «Калан», 2012. – 472 с. .

style="border: solid 1px #CCCCCC; margin-top: 4px; display:inline-block; width:250px">

Принцип действия пенного ствола средней кратности
1 - подвод воздуха; 2 - смесь води и пенообразователя; 3 - сетка; 4 - диффузор; 5 - приемное сопло; 6 - соединение между направляющим соплом к приемным соплом; 7 - направляющее сопло; 8 - полугайка для подсоединения рукава

style="border: solid 1px #CCCCCC; margin-top: 4px; display:inline-block; width:250px">

Принцип работы генератора высокократной пены
1 - двигатель; 2 - вентилятор; 3 - диффузор: 4 - распылитель; 5-гибкий пенопровод; 6 - пена; 7 - пакет сеток; 8 - рама (шасси); 9 - вентиль для регулирования подачи раствора; 10 - полугайка для присоединения рукава

Химическая пена

См. Химическая пена
Химическая пена из-за сложности приготовления и относительно высокой стоимости в последнее время применяется редко.

Химическая пена может быть получена двумя способами: «мокрым» и «сухим» . При «мокром» способе два вещества, хранящихся раздельно в виде растворов (один из них щелочной, другой - кислотный), смешивают перед подачей в очаг пожара. В результате их взаимодействия образуется пена.

«Мокрым» способом можно получать иену кратностью от нескольких сотен до нескольких тысяч.

При «сухом» способе пенообразующий порошок, состоящий из точно дозированных щелочных и кислотных солей, смешивают в пеногенераторе с потоком воды. При растворении солей во время движения смеси по водонапорному рукаву происходит такая же химическая реакция, как и при «мокром» способе.

«Мокрый» способ получения пены менее экономичен, так как хранение растворов связано с проблемой сооружения резервуаров большой емкости, сложностью их обслуживания и предупреждения коррозии Шрайбер Г., Порст П. , Огнетушащие вещества, М.: Стройиздат, 1975 г. .

По кратности

См. Кратность пены
В зависимости от величины кратности пены разделяют на четыре группы:
  • пеноэмульсии, К;
  • низкократные пены, 3 ;
  • пены средней кратности, 20 ;
  • пены высокой кратности, К > 200 .

style="border: solid 1px #CCCCCC; display:inline-block; height:200px">


Получение пены низкой кратности
с помощью ручного пожарного ствола ОРТ-50

style="border: solid 1px #CCCCCC; display:inline-block; height:200px">

Получение пены высокой кратности с использованием

Получение пены высокой кратности с использованием
стационарных систем пожаротушения


Применение пены различной кратности www.pozhproekt.ru ОРТ-50 www.heatandcool.ru Тушение пожара с помощью пены: преимущества и особенности

Основные свойства

Физико-химические свойства пены:
  • кратность - отношение объема пены к объему раствора пенообразователя, содержащегося в пене;
  • дисперсность - степень измельчения пузырьков (размеры пузырьков);
  • вязкость - способность пены к растеканию по поверхности;
  • стойкость – способность проводить электрический ток.
Огнетушащие свойства пены:
  • изолирующее действие (пена препятствует поступлению в зону горения горючих паров и газов, в результате чего горение прекращается);
  • охлаждающее действие (в значительной степени присуще пене низкой кратности, содержащим большое количество жидкости) .
Изолирующее свойство пены - способность препятствовать испарению горючего вещества и прониканию через слой пены паров газа. Изолирующие свойства пены зависят от ее стойкости, вязкости и дисперсности. Низкократная и среднекратная воздушно-механическая пена обладает изолирующей способностью в пределах 1,5-2,5 мин при толщине изолирующего слоя 0,1 - 1 м.

Кратность

См. Кратность пены
Кратность воздушно-механической пены в равной мере зависит как от физико-химических свойств исходного пеноконцентрата общего или целевого назначения, так и от технических особенностей генераторов пены , имеющих специфические конструктивные ограничения.

Значение кратности пены К п определяют по формуле:

Чем выше дисперсность, тем выше стойкость пены и огнетушащая эффективность. С повышением дисперсности пены ее кратность уменьшается. Степень дисперсности пены во многом зависит от условий ее получения, в том числе и от характеристики аппаратуры.

Кратность и дисперсность пены определяют изолирующую способность пены и ее текучесть. Скорость растекания пены тоже важный фактор при тушении пожара.

Вязкость

Для оценки качества пены недостаточно знать только время полураспада пены и ее тепло- стойкость, так как стойкая пена с большим периодом полураспада и высокой теплостойкостью может иметь при определенных условиях плохую" текучесть, вследствие чего горящая поверхность не покрывается пеной вообще или покрывается ею очень медленно. Поэтому определению текучести пены уделяется большое внимание.

Вязкость пены влияет на текучесть пены и оценивается коэффициентом динамической вязкости μ. В отличие от жидкости пена обладает свойствами упругого твердого тела. Внешне это проявляется в способности пены сохранять определенное время свою первоначальную форму.

Вязкость пены зависит от многих факторов и параметров, прежде всего от природы пенообразователя, кратности и дисперсности. Зависимость коэффициента динамической вязкости ц пены при различных дисперсностях показана на рис. 7.3.1. Из рисунка видно, что коэффициент динамической вязкости пены повышается с увеличением ее кратности и дисперсности.

Высокой вязкостью обладают пены, имеющие меньшую скорость истечения жидкости. Со временем в процессе старения пены вязкость ее сначала увеличивается, а затем в зависимости от типа пенообразователя может оставаться постоянной или уменьшаться.

Стойкость

Стойкость пены - это обратная величина интенсивности выделения отсека с размерностью м 3 /м 3 * с.

Стойкость пены S характеризуется ее сопротивляемостью процессу разрушения и оценивается продолжительностью выделения из пены 50 % жидкой среды, называемой отсеком. Любая замкнутая система, обладающая избытком свободной энергии, находится в неустойчивом равновесии, поэтому энергия такой системы всегда уменьшается. Этот процесс протекает до достижения минимального значения свободной энергии, при котором в системе наступает равновесие. Если система состоит, например, из жидкости и газа (что имеет место в пенах), то минимальное значение свободной энергии будет достигнуто тогда, когда поверхность раздела фаз окажется минимальной.

Пена, как и любая дисперсная система, является неустойчивой. Неустойчивость пены объясняется наличием избытка поверхностной энергии, пропорциональной поверхности раздела фаз жидкость - газ. Следовательно, состояние равновесия пены будет достигнуто тогда, когда она превратится в жидкость и газ, т. е. прекратит свое существование. Поэтому применительно к пенам можно говорить лишь об относительной стойкости.

Экспериментально установлено, что стойкость пены зависит в основном от температуры окружающей среды, дисперсности и толщины стенок пузырьков.

Толщина стенок пузырька - h ст , его диаметр - d п и кратность пены - К п связаны зависимостью:

h ст = d п / К п (3)

Стойкость пены зависит также от высоты пенного слоя. При увеличении высоты слоя пены уменьшается выделение жидкой фазы, следовательно, стойкость пены увеличивается.

Пены с большей кратностью менее термостойки. С повышением вязкости пены стойкость ее возрастает, но ухудшается растекаемость по горящей поверхности.

Огнетушащая эффективность пены

ВМП обладает необходимой стойкостью, дисперсностью, вязкостью, охлаждающими и изолирующими свойствами, которые позволяют использовать ее для тушения твердых материалов, жидких веществ и осуществления защитных действий, для тушения пожаров по поверхности и объемного заполнения горящих помещений (пена средней и высокой кратности). Для подачи пены низкой кратности применяют воздушно-пенные стволы СВП (СВПЭ), а для подачи средней и высокой кратности - пеногенераторы ГПС В.П. Иванников, П.П. Клюс, "Справочник руководителя тушения пожара", Москва, Стройиздат, 1987.; .

Пены низкой кратности. Огнетушащее действие пены определяется эффектом охлаждения и изоляции. Оба эффекта не всегда оказывают свое действие одновременно и в одинаковой степени. Чаще всего в зависимости от условий протекания пожара временно преобладает тот или иной эффект.

Охлаждающий эффект пены обусловливается охлаждающим действием самой пены и воды, выделяющейся из пены.

Охлаждающий эффект является доминирующим при тушении пожаров, сопровождающихся тлением твердых материалов (например, древесины, бумаги, текстиля), а также при тушении пожаров нефти и жидкостей, при горении которых создаются прогретые зоны.

Этой способностью обладают средние и тяжелые жидкие топлива, при горении Которых верхние, нагретые до 200-300°С, поверхностные слои конвенционными потоками перемещаются со скоростью 5-20 см/ч в нижние слои. Тушение таких пожаров достигается охлаждением этих нагретых слоев топлива.

Изолирующее действие достигается благодаря образованию слоя пены, который препятствует доступу кислорода к очагу пожара.

Разновидностями изолирующего эффекта являются:

  • эффект разделения, заключающийся в изолировании жидкости от паровой фазы;
  • эффект вытеснения, обусловливающий изоляцию горючего вещества от воздуха;
  • преграждающий эффект, при котором пена препятствует испарению горючей жидкости.
Исследования по разделению этих эффектов и действенности каждого из них в зависимости от очага пожара пока неизвестны, поэтому указанные эффекты не могут точно определяться и характеризоваться.

Используемый для пенообразования газ, главным образом воздух или углекислый газ, не оказывает Прямого влияния на огнетушащий эффект пены, но обусловливает ее устойчивость.

Пена средней и высокой кратности. Огнетушащее действие высокократной пены основано главным образом на эффекте подавления. Охлаждающее действие ее настолько мало, что его влияние на процесс тушения незначительно. При подаче иены в очаг пожара происходит ее разрушение и испарение из нее воды. Например, если пена имеет кратность 1000, то в 1 м3 пены содержится около 1000 л воздуха и I л воды. В самых благоприятных условиях при испарении 1 л воды образуется 1700 л водяного пара, т. е. в общем объеме (2700 л) будет содержаться всего 200 л кислорода (7,4 об. %), что недостаточно для поддержания процесса горения. На практике такие соотношения не наблюдаются, так как испарение воды происходит не сразу, а постепенно из-за доступа свежего воздуха из периферийных зон очага горения. К тому же тлеющие пожары тушатся пеной сразу. Причина быстрого тушения таких пожаров заключается в следующем. При подаче в очаг пожара пена покрывает всю его площадь, благодаря чему вокруг очага горения создается обедненная кислородом и насыщенными парами воды атмосфера, что способствует замедлению и затем полному прекращению горения.

Другими важными свойствами высокократной пены являются теплоизолирующая способность и способность препятствовать распространению пожара па близлежащие горючие вещества. Так, при тушении пожара угольной пыли высокократная пена показывает такое же огнетушащее действие, как и смесь воды со смачивателем.

Пена средней кратности на основе ПО-1С , применяемая для тушения этилового спирта, эффективна при разбавлении его водой в емкости до 70 %, а при использовании ПО-1 , ПО-1Д , ПО-2А , ПО-ЗА , ПО-6К и других - до 50%. ВМП менее электропроводна, чем химическая пена, и более электропроводна, чем вода. Поэтому тушение ею электроустановок с помощью ручных средств может производиться после их обесточивания.

Механизм прекращения горения

При тушении пену подают на отдельные участки горящей поверхности, и растекаясь по поверхности горючего, пена создаёт слой определённой толщины. Огнетушащая способность пены обусловлена, прежде всего, её изолирующим действием, т. е. способностью препятствовать прохождение в зону пламени горючих паров. Изолирующее действие пены зависит от её физико-химических свойств и структуры, от толщины слоя, а также от природы горючего вещества и температуры на его поверхности. При тушении твёрдых материалов, существенное значение имеет охлаждающее действие.

style="border: solid 1px #CCCCCC; display:inline-block; width:300px">


воздушно-механической пеной:
I
II
на процесс горения;
III

Схема прекращения горения жидкости
воздушно-механической пеной:
I - участок свободного горения;
II - участок активного воздействия пены
на процесс горения;
III - участок, на котором горение прекращено;
δ - глубина горючей жидкости в резервуаре

Взаимодействие пены с ГЖ с момента её подачи на горящую поверхность и до образования сплошного слоя пены представляет собой комплекс явлений:

  1. При интенсивности подачи пены, превышающей интенсивность её разрушения, на поверхности ГЖ образуется сразу локальный слой пены, который охлаждает ГЖ, выделяющимся из пены, отсеком. Охлаждение прогретого слоя ГЖ отсеком пены приводит к тому, что уменьшается скорость испарения ГЖ, вследствие этого уменьшается концентрация паров горючего в зоне горения, скорость химической реакции и скорость тепловыделения, и, как конечный результат, - температура горения .
  2. Как только образуется локальный слой пены на поверхности ГЖ, он экранирует часть ГЖ от лучистого потока пламени и охлаждает верхний прогретый слой. Уменьшается концентрация паров горючего в зоне горения, снижается скорость окисления, и снижается температура горения.
  3. При достижении на поверхности жидкости слоя пены определённой толщины, прекращается поступление выделяющихся паров ГЖ в зону горения. Следовательно, пена изолирует горючую жидкость от зоны горения, и горение прекращается Фондовая лекция по дисциплине «Физико-химические основы развития и тушения пожаров», Тема: Пены как огнетушащие вещества.

Разрушение пены

Результат тушения достигается за определенное время. В процессе тушения пена разрушается. Обычно рассматривают следующие виды разрушения пен: термическое - под действием тепловых потоков от факела пламени и нагретой жидкости; контактное - в результате проникновения жидкости в структуру пены; гидростатическое (синерезис). При термическом разрушении происходит разрыв стенок пузырьков из-за расширения заключенного в них нагретого газа. Причинами контактного разрушения являются взаимная растворимость пенообразующего раствора и горючей жидкости, в результате втягивания жидкости в места пересечения пузырьков пены - «каналы Плато - Гиббса» - за счет пониженного давления в них, в результате капиллярных явлений. Гидростатическое разрушение (обезвоживание) происходит за счет истечения раствора из пенной структуры под действием силы тяжести (сил гравитации).

Существует три основных процесса, приводящие к разрушению пены:

  • перераспределение размеров пузырьков;
  • уменьшение толщины пленки;
  • разрыв пленки.
Эти процессы быстро разрушали бы пены, если бы не стабилизирующие факторы. Этих факторов три: кинетический, структурно-механический и термодинамический.

Кинетический фактор замедляет процесс утончения пленок, а следовательно, способствует повышению жизнеспособности пен. Необходимо, правда, отметить, что кинетическое действие заметно проявляется только в малоустойчивых пенах. Кинетический фактор часто называют эффектом самозалечивания, или эффектом Марангони . Суть его в том, что утончение пленки вследствие истечения жидкости под действием сил гравитации или всасывания ее через «каналы Плато - Гиббеа» происходит неравномерно. Отдельные участки пленки вокруг пенного пузырька становятся очень тонкими и способны разрушаться. В таких локальных тонких участках поверхностное натяжение возрастает, так как расстояние между молекулами ПАВ в поверхностном слое увеличивается. Вследствие этого раствор с повышенной концентрацией ПАВ из зоны низкого поверхностного натяжения, т. е. из участков с утолщенной пленкой, устремляется к истонченным зонам. Истонченные участки пленки самопроизвольно «залечиваются». Время, за которое совершается такое перетекание раствора, измеряется сотыми и даже тысячными долями секунды, поэтому вероятность разрыва пленки понижается и устойчивость возрастает.

Подтверждением этому служат наблюдения Дюпре: твердые вещества (свинцовая дробь) и капли жидкости (ртуть) могут пройти через пленку пены, не оставив дыры и не вызвав разрыва. Однако после длительной сушки пленки (высыхание пены), когда количество жидкости в ней сильно уменьшилось и перетекание раствора ПАВ становится невозможным, каждый такой «снаряд» вызывает разрыв.

Структурно-механический фактор стабилизации пен связан со специфическим упрочнением тонких пленок за счет гидратации адсорбционных слоев, а также за счет повышения вязкости межпленочной жидкости.

Взаимодействие полярных групп молекул ПАВ с водой (гидратация) ограничивает истечение межпленочной жидкости из среднего слоя «сэндвича» пленки под действием сил тяжести и капиллярных сил. В самом адсорбционном слое гидратированные молекулы ПАВ сцепляются между собой, в результате повышается прочность на растяжение и адсорбционных слоев, и пленки в целом.

Для повышения вязкости межпленочной жидкости к ПАВ добавляют определенные продукты, например, в присутствии тысячных долей процента спирта вязкость растворов ПАВ увеличивается в десятки раз.

Термодинамический фактор , или расклинивающее давление, проявляется в тонких пленках, когда возникает избыточное давление, препятствующее их утончению под действием внешних сил. Появление расклинивающего давления при истечении из пленок жидкости Б. В. Дерягин и Л. Д. Ландау объяснили следующим образом. На коллоидных частицах поверхностно-активных веществ всегда присутствуют жидкие оболочки повышенной вязкости и упругости. Эти оболочки создают механический барьер, препятствующий сближению и слипанию частиц при утончении пленок за счет истечения жидкости. Кроме того, в водном растворе электролита между поверхностями одноименно заряженных частиц действуют силы отталкивания. Оба эти явления и обусловливают расклинивающее давление в пленке.

Процесс разрушения пены характеризуется интенсивностью разрушения I разр . Интенсивность разрушение пены за счет действия высокой температуры I разр терм и контактного взаимодействия с горючей жидкостью I разр конт зависит от кратности пены. Чем выше кратность пены, тем ниже интенсивность разрушения от контактного взаимодействия с горючей жидкостью, но увеличивается термическая интенсивность разрушения


Из рисунка видно, что существует некоторая оптимальная кратность пены, при которой термическая и контактная интенсивности разрушения пены достаточно малы и равны друг другу. Значение такой кратности ориентировочно равно 100 .

Применение пены

Низкократные пены подают на ликвидацию горения в основном горящих поверхностей. Они хорошо удерживаются и растекаются по поверхности, препятствуют прорыву горючих паров, обладают значительным охлаждающим действием, их можно подать струей на значительное расстояние; кроме того, пена хорошо проникает через неплотности и удерживается на поверхности, обладает высокими изолирующими и охлаждающими свойствами.

Высокократную пену , а также пену средней кратности применяют для заполнения объемов, вытеснения дыма, изоляции отдельных объектов от действия теплоты и газовых потоков (в подвалах; пустотах перекрытий; сушильных камерах и вентиляционных системах и т.п.

Пена средней кратности в настоящее время является основным огнетушащим средством ликвидации горения нефти и нефтепродуктов в резервуарах и разлитых на открытой поверхности.

Воздушно-механическую пену часто применяют в сочетании с огнетушащими порошковыми составами , нерастворимыми в воде. Огнетушащие порошковые составы высокоэффективны для ликвидации пла-менного горения, но почти не охлаждают горящую поверхность. Пена компенсирует этот недостаток и дополнительно изолирует поверхность.

Пены - достаточно универсальное средство и используются для тушения жидких и твердых веществ, за исключением веществ, взаимодействующих с водой. Пены электропроводны и коррозируют металлы. Наиболее электропроводна и активна химическая пена. Воздушно-механическая пена менее электропроводна, чем химическая, однако более электропроводна, чем вода, входящая в состав пены.

Для ликвидации горения спиртов и водорастворимых органических соединений используют пенообразователи, в состав которых входят природные или синтетические полимеры.

Кроме того, пена средней кратности широко применяется на аэродромах, для покрытия взлетно-посадочной полосы слоем пены, в случае аварийной посадки воздушного судна. Слой пены, нанесенный на взлетно-посадочную полосу, предотвращает образование искр при скольжении колес самолета во время вынужденной посадки.

Воздушно-механическая пена предназначена для тушения пожаров жидких (класс пожара В) и твердых (класс пожара А) горючих веществ. Пена представляет собой ячеисто-пленочную дисперсную систему, состоящую из массы пузырьков газа или воздуха, разделенных тонкими пленками жидкости.

Получают воздушно-механическую пену механическим перемешиванием пенообразующего раствора с воздухом. Основным огнетушащим свойством пены является ее способность препятствовать поступлению в зону горения горючих паров и газов, в результате чего горение прекращается. Существенную роль играет также охлаждающее действие огнетушащих пен, которое в значительной степени присуще пенам низкой кратности, содержащим большое количество жидкости.

Важной характеристикой огнетушащей пены является ее кратность – отношение объема пены к объему раствора пенообразователя, содержащегося в пене. Различают пены низкой (до 10), средней (от 10 до 200) и высокой (свыше 200) кратности. Пенные стволы классифицируются в зависимости от кратности получаемой пены (рис. 3.23).

ПЕННЫЕ ПОЖАРНЫЕ СТВОЛЫ

Для получения пены низкой кратности

Для получения пены средней кратности

Комбинированные для получения пены низкой и средней кратности

Рис. 3.23. Классификация пенных пожарных стволов

Пенный ствол – устройство, устанавливаемое на конце напорной линии для формирования из водного раствора пенообразователя струй воздушно-механической пены различной кратности.

Для получения пены низкой кратности применяются ручные воздушно-пенные стволы СВП и СВПЭ. Они имеют одинаковое устройство, отличаются только размерами, а также эжектирующим устройством, предназначенным для подсасывания пенообразователя из емкости.

Ствол СВПЭ (рис. 3.24) состоит из корпуса 8 , с одной стороны которого навернута цапковая соединительная головка7 для присоединения ствола к рукавной напорной линии соответствующего диаметра, а с другой – на винтах присоединена труба5 , изготовленная из алюминиевого сплава и предназначенная для формирования воздушно-механической пены и направления ее на очаг пожара. В корпусе ствола имеются три камеры: приемная6 , вакуумная3 и выходная4 . На вакуумной камере расположен ниппель2 диаметром 16 мм для присоединения шланга1 , имеющего длину 1,5 м, через который всасывается пенообразователь. При рабочем давлении воды 0,6 МПа создается разрежение в камере корпуса ствола не менее 600 мм рт. ст. (0,08 МПа).

Рис. 3.24. Ствол воздушно-пенный с эжектирующим устройством типа СВПЭ:

1 – шланг; 2 – ниппель; 3 – вакуумная камера; 4 – выходная камера; 5 – направляющая труба; 6 – приемная камера; 7 – соединительная головка; 8 – корпус

Принцип образования пены в стволе СВП (рис. 3.25) заключается в следующем. Пенообразующий раствор, проходя через отверстие 2 в корпусе ствола1 , создает в конусной камере3 разрежение, благодаря которому воздух подсасывается через восемь отверстий, равномерно расположенных в направляющей трубе4 ствола. Поступающий в трубу воздух интенсивно перемешивается с пенообразующим раствором и образует на выходе из ствола струю воздушно-механической пены.

Рис. 3.25. Ствол воздушно-пенный СВП:

1 – корпус ствола; 2 – отверстие; 3 – конусная камера; 4 – направляющая труба

Принцип образования пены в стволе СВПЭ отличается от СВП тем, что в приемную камеру поступает не пенообразующий раствор, а вода, которая, проходя по центральному отверстию, создает разрежение в вакуумной камере. Через ниппель в вакуумную камеру по шлангу из ранцевого бочка или другой емкости подсасывается пенообразователь. Технические характеристики пожарных стволов для получения пены низкой кратности представлены в табл. 3.10.

Таблица 3.10

Показатель

Размерность

Тип ствола

Производительность по пене

Рабочее давление перед стволом

Расход воды

Кратность пены на выходе из ствола

(не менее)

(не менее)

Дальность подачи пены

Соединительная головка

Для получения из водного раствора пенообразователя воздушно-механической пены средней кратности и подачи ее в очаг пожара используются генераторы пены средней кратности.

В зависимости от производительности по пене выпускаются следующие типоразмеры генераторов: ГПС-200; ГПС-600; ГПС-2000. Их технические характеристики представлены в табл. 3.11.

Таблица 3.11

Показатель

Размерность

Генератор пены средней кратности

Производительность по пене

Кратность пены

Давление перед распылителем

Расход 4 – 6 % раствора пенообразователя

Дальность подачи пены

Соединительная головка

Генераторы пены ГПС-200 и ГПС-600 по конструкции идентичны и отличаются только геометрическими размерами распылителя и корпуса. Генератор представляет собой водоструйный эжекторный аппарат переносного типа и состоит из следующих основных частей (рис. 3.26): корпуса генератора 1 с направляющим устройством, пакета сеток2 , распылителя центробежного3 , насадка4 и коллектора5 . К коллектору генератора при помощи трех стоек крепится корпус распылителя, в котором вмонтирован распылитель3 и муфтовая головка ГМ-70. Пакет сеток2 представляет собой кольцо, обтянутое по торцевым плоскостям металлической сеткой (размер ячейки 0,8 мм). Распылитель вихревого типа3 имеет шесть окон, расположенных под углом 12 ° , что вызывает закручивание потока рабочей жидкости и обеспечивает получение на выходе распыленной струи. Насадок4 предназначен для формирования пенного потока после пакета сеток в компактную струю и увеличения дальности полета пены. Воздушно-механическая пена получается в результате смешения в генераторе в определенной пропорции трех компонентов: воды, пенообразователя и воздуха. Поток раствора пенообразователя под давлением подается в распылитель. В результате эжекции при входе распыленной струи в коллектор происходит подсос воздуха и перемешивание его с раствором. Смесь капель пенообразующего раствора и воздуха попадает на пакет сеток. На сетках деформированные капли образуют систему растянутых пленок, которые, замыкаясь в ограниченных объемах, составляют сначала элементарную (отдельные пузырьки), а затем массовую пену. Энергией вновь поступающих капель и воздуха масса пены выталкивается из пеногенератора.

Вкачестве пенных пожарных стволов комбинированного типа рассмотрим установки комбинированного тушения пожаров (УКТП) «Пурга», которые могут быть ручного, стационарного и мобильного исполнения. Они предназначены для получения воздушно-механической пены низкой и средней кратности. Технические характеристики УКТП различного исполнения представлены в табл. 3.12. Кроме того, для этих стволов разработаны диаграмма радиуса действия и карта орошения (рис. 3.27), что позволяет более четко оценивать их тактические возможности при тушении пожаров.

Таблица 3.12

Показатель

Размер- ность

Установка комбинированного тушения пожара (УКТП) типа

«Пурга-5»

«Пурга-7»

«Пурга-10»

«Пурга-10.20.30»

«Пурга-30.60.90»

«Пурга-200–240»

Производительность по раствору пенообразователя

Производительность по пене средней кратности

Дальность подачи струи пены средней кратности

Рабочее давление перед стволом

Кратность пены

пенообразователя

Тема Назначение виды и устройство оборудования для получения воздушно-механической пены

Вид занятия : классно-групповое

Отводимое время : 1 учебный час.

Литература: учебник «Пожарная техника»

Развернутый план занятий.

Пенообразователи общего назначения изготовляются на основе дешевого и доступного сырья. Используются для получения пены и растворов смачивателей.

Предназначены для тушения пожаров нефтепродуктов, дерева, ткани, бумаги, торфа, хлопка, каучука, пластмасс и т.д. Служат для получения пены низкой, средней кратности и высокой.

К ним относятся:

  • ТЭАС – А

Преобразователи целевого назначения

Пенообразователи целевого назначения используются для получения пены, при тушении пожаров нефтепродуктов и различных классов горючих жидкостей наиболее пожароопасных объектов, а также для применения с морской водой, при низкой температуре и других особых условиях. Некоторые из них изготавливаются на основе дефицитного дорогостоящего сырья.

К ним относятся:

    Пленкообразующий

  • Универсальный

Физико-химические и огнетушащие свойства пен.

Огнетушащие пены разделяются на химическую и воздушно - механическую.

Химическая пена (кратность до 6)получают в результате химической реакции между кислой и щелочной частями:

Fe2(S04)3+6NaHC03-)-3Na2S04+2Fe(OH)3+6C02

H 2 S 04+2 NaHC 03-> Na 2 S 04+2 C 02+2 H 20

Воздушно - механическая пена получается путем механического перемещения трех компонентов: воды, пенообразователя и воздуха.

Согласно ГОСТ 12.1.114-82 ВМП подразделяется на три вида:

    ВМП низкой кратности К<20 (для расчетов К=10) ВМП

    средней кратности 20^К^200 (для расчетов К=100)

    ВМП высокой кратности К>200 (для расчетов К=1000)

Физико-химические и огнетушащие свойства пен и область их применения .

Огнетушащие пены представляют собой совокупность пузырьков ,

состоящих из

жидкостной оболочки, заполненной воздухом или газами, т.е. пена - это

концентрированная эмульсия газа и в жидкости.

Химическая пена состоит на 80% С02 (углекислого газа) , 19,7% водного раствора и 0,3% пенообразующих веществ.

ВМП состоит из 83-99,6% воздуха и 0,4-17% водного раствора ПО.

Основными свойствами пен независимо от способа их получения являются следующие:

1. Кратность пены - это отношение объема пены к объему пенообразующей жидкости. Кратность зависит от типа, качества и концентрации ПО в воде, от конструкции пенного прибора, от напора перед распылителем и от температуры подсасываемого воздуха.

2. Стойкость пены - это способность противостоять разрушению в течении определенного времени. Стойкость пены - это время в течении которого пена разрушается на 50% первоначального объема. Стойкость зависит: от вида ПО, свойств и температуры веществ, с которыми она взаимодействует, способа подачи, высоты пенного слоя. т=3,8-18мин (САМПО - несколько часов)

3. Высокая теплоемкость - пена, разрушаясь, охлаждает горящие вещества (строительные конструкции, ЛВЖ и ГЖ) за счет имеющегося в ее структуре водного раствора пенообразователя.

4. Небольшая плотность 4-170 кг/м 3 . Плотность зависит от кратности пены, Пена плавает на поверхности жидкостей, не создает чрезмерной нагрузки на покрытия, исключает потерю устойчивости судна при тушении пожаров.

5. Низкая теплопроводность - она близка к теплопроводности неподвижных газов. Это позволяет использовать пену в качестве теплоизоляционного экрана от действия лучистой энергии.

6.Изолирующая способность - при тушении пеной, слой пены препятствует проникновению паров в зону горения и тепла из зоны горения к поверхности вещества.

7. Вязкост ь - способность пены к растеканию.

8. Дисперстность - степень измельчения т.е. размеры пузырьков. С увеличением дисперстности пены, растет время ее существования, вязкость и парогазонепроницаемость.

Способ получения пен и предназначение для пожаротушения:

    Пена низкой кратности – стволы СВЭ; СВПЭ; ОРТ-50 с насадкой – тушение хлопка и родственных веществ, так же применяется для тушения резина образных изделий и паралона.

    Пена средней кратности – ГПС-600; ГПС-800; ГПС – 2000 – тушение ЛВЖ.

    Пена высокой кратности - получается ТОЛЬКО при помощи пожарного дымососа. Тушение объемных пожаров (подвалы). В этой пене можно дышать .

Схемы боевого развертывания с подачей ВМП


Введение

Пенообразователи

Виды пенообразователей

Дозаторы для пенообразователя

Хранение пенообразователя

Заключение

Список источников

Введение

Тема моей работы: «Особенности применения воздушно-механической пены для тушения пожаров».

Моя работа должна рассказать и объяснить что такое воздушно-механическая пена, как и где ее применяют, а так же виды пен и способы пенообразования.

Пенное пожаротушение в нефтегазовой отрасли является наиболее популярным, эффективным, а порой и единственно возможным. Для защиты объектов фактически применяют все виды воздушно-механических пен: пена низкой, средней и высокой кратности. При этом используются пенообразователи в соответствии с их назначением, химическим составом, способом подачи.

Таким образом, можно наметить тенденции по совершенствованию пенного тушения

· создание новых современных пенообразователей;

· создание отдельных компонентов-добавок к существующим пенообразователям, повышающих их качество (добавка полимеров для повышения стойкости пены);

· совершенствование конструкции пеногенераторов (высокократная пена, полученная без принудительной подачи воздуха или наполненная инертным газом);

· совершенствование тактических приемов тушения пожаров с применением пены.

Пенное пожаротушение -- тушение пожара с использованием пены.

Пены широко используются для тушения пожаров на промышленных предприятиях, складах, в нефтехранилищах, на транспорте и т. д. Пены представляют собой дисперсные системы, состоящие из пузырьков газа, окруженных пленками жидкости, и характеризующиеся относительной агрегатной и термодинамической неустойчивостью. Если пузырьки газа имеют сферическую форму, а их суммарный объём сопоставим с объёмом жидкости, то такие системы называются газовыми эмульсиями. Для получения воздушно-механической пены требуются специальная аппаратура и водные растворы пенообразователей.

Достоинства пены как средства тушения:

· существенное сокращение расхода воды;

· возможность тушения пожаров больших площадей;

· возможность объемного тушения;

· возможность подслойного тушения нефтепродуктов в резервуарах;

· повышенная (по сравнению с водой) смачивающая способность.

· при тушении пеной не требуется одновременное перекрытие всего зеркала горения, поскольку пена способна растекаться по поверхности горящего материала.

Наиболее важной структурной характеристикой пены является её кратность, под которой понимают отношение объёма пены к объёму её жидкой фазы. Воздушно-механическая пена подразделяется на:

низкократную (кратность до 20);

среднекратную (20 -- 100);

высокократную (выше 100).

Система пенного тушения на авианосце.

Наиболее широко применяется пена среднекратная (в России), реже -- низкократная. Пена высокократная находит ограниченное применение в пожаротушении, в основном при объёмном тушении.

Область применения воздушно-механической пены целесообразно ограничить только легковоспламеняющимися нефтепродуктами, имеющими низкую температуру вспышки. Доля дизельного топлива в общем балансе нефтепродуктов непрерывно растет. Замена пенных систем на системы тушения перемешиванием для резервуаров с дизельным топливом на крупных складах промышленных, энергетических и транспортных предприятий может дать значительный технико-экономический эффект. Широкое внедрение систем тушения перемешиванием может сократить требуемые запасы пенообразователя, обеспечить в смешанном резервуарном парке вторую независимую систему тушения пожаров, а также использовать систему перемешивания для охлаждения поверхностного слоя жидкости / в обогреваемом пожаром резервуаре.

Воздушно-механические пены могут использоваться для тушения как жидких, так и твердых горючих материалов.

При тушении ЛВЖ наибольший эффект достигается при подаче максимального количества пены в возможно короткий срок.

Подавать пенную струю на горящую поверхность необходимо после того, как из ствола начнет выходить высококачественная пена.

Струю пены следует подавать на край участка пожара и, перемещая ее к центру, покрывать пеной всю поверхность горящей жидкости. Не следует водить стволом над горящей поверхностью: это способствует разрушению пены.

Пену можно подавать на переборки над очагом пожара: растекаясь от переборок, она будет равномерно покрывать горящую поверхность.

Для тушения горящих вертикальных поверхностей пену следует подавать в верхнюю часть поверхности.

В холодную погоду не надо длительное время использовать пену для предупреждения сбоев в работе пенного ствола из-за замерзания пенообразователя.

Подсос горячего дыма в пеногенератор резко снижает кратность и стойкость пены, поэтому использовать пеногенераторы следует с наветренной стороны. Одновременное использование пены и воды для тушения пожара нецелесообразно, так как подаваемая вода будет разрушать пену. Воздушно-механическую пену средней и высокой кратности можно использовать и как объемное средство тушения пожара.

Рисунок 1. Применение пены

Пенообразователи

В зависимости от химического состава (поверхностно-активной основы) пенообразователи подразделяют на:

· синтетические углеводородные;

· синтетические фторсодержащие.

По виду воздействия на очаг пожара выделяют:

· поверхностные -- дренчерные. Защита всей расчетной площади; установки для защиты резервуаров с горючими жидкостями;

· локально-поверхностные: спринклерные -- для защиты отдельных аппаратов, отдельных участков помещений; дренчерные -- для защиты отдельных объектов, аппаратов, трансформаторов и т. п.;

· общеобъёмные -- предназначены для заполнения защищаемых объёмов;

· локально-объёмные -- для заполнения отдельных объёмов технологических аппаратов, небольших встроенных складских помещений и других;

· комбинированные -- соединены схемы установок локально-поверхностного и локально-объёмного тушения для одновременной подачи пены в объём или по поверхности технологических аппаратов и на поверхность вокруг них.

Виды пенообразователей

1. Пенообразователи синтетические углеводородные

Данный тип имеет в своём составе главным образом поверхностно-активные углеводородные вещества, имеющие особую синтетическую природу. Их же делят на пенообразователи целевого, а также общего типа назначения. Пенообразователи, имеющие целевое назначение применяют исключительно для тушения пожаров, которые соответствуют техническим параметрам использования данного типа пенообразователей. Общего назначения пенообразователи используют исключительно для ликвидации пожаров, при которых происходит воспламенение жидких (в числе которых также и нефтепродукты), а также твёрдых типов веществ.

2. Пенообразователи протеиновые

Пенообразователи данного типа состоят главным образом из активно-поверхностных веществ, получаемых при гидролизе различных соединений белка. Данные составы применяют для ликвидации горящих нефтепродуктов, нефти, а также иных горючих жидких веществ.

3. Пенообразователи фторсодержащие синтетические

Данные пенообразователи состоят главным образом из фтора, а также его производных. Составы данного рода применяют для ликвидации горящих горючих жидких веществ.

4. Пенообразователи плёнкообразующие синтетические

При тушении данным составом на поверхности воспламенившихся поверхностей образуется особая плёнка, которая препятствует горению. Этот состав имеет в своей основе фторуглеродные вещества. По сравнению с углеводородными, данные пенообразователи способны намного лучше тушить пожары практически любого уровня сложности, возникших на любых поверхностях.

5. Протеиновые фторсодержащие пенообразователи

Эти пенообразователи состоят в основном из фторсодержащих добавок, благодаря которым и происходит процесс образования пены. Протеиновые фторсодержащие пенообразователи имеют высокие способности для тушения возгораний практически любого типа материалов. Пенообразователи данного типа активно используют при ликвидации возгораний, возникающих на крайне пожароопасных объектах.

Дозаторы для пенообразователя

Для подмешивания пенообразователя в воду применяются различные устройства:

Устройства на принципе трубки Вентури. Это самые простые дозаторы. Их достоинство заключается в простоте устройства, дешевизне. Основные недостатки такой системы -- большие потери в напорном трубопроводе, невозможность получения концентраций ниже 3 %, невозможность получения точной концентрации раствора.

Баки-дозаторы -- устройства совмещающие в себе ёмкость для хранения пенообразователя и дозирующее устройство, работают независимо от давления в системе. Недостатки -- невозможно проконтролировать визуально или с помощью датчиков остаток пенообразователя, громоздкость, большие затраты на эксплуатацию.

Рисунок 2. Переносной дозатор с приводом от гидромотора

Дозирующие насосы с приводом от гидромотора (Рис.2) -- наиболее современная система и простая в эксплуатации система, не требует внешнего источника энергии работает в широком диапазоне расходов и давления. Проста и надежна в эксплуатации.

Недостатки -- дозирующий насос находится в непосредственной близости от питающего трубопровода -- наличие всасывающего трубопровода подачи пенообразователя.

Виды воздушно механических пен

Воздушно-механическая пена образуется в результате интенсивного механического перемешивания водного раствора пенообразователя с воздухом.

Для получения пены применяются пенообразователи ПО-1 и ПО-6.

Пенообразователь ПО-l представляет собой нейтрализованный керосиновый контакт, содержащий не менее 45% суль- фокислот. Для получения необходимой кратности и стойкости пены в него добавляют 4,5% клея и 10% спирта или этилен- гликоля.

Пенообразователь ПО-6 является продуктом щелочного гидролиза технической крови животных. Для придания устойчивости пены в него добавляют 1% сернокислого закисного железа. Чтобы предотвратить загнивание пенообразователя при длительном хранении, в него добавляют 4% фтористого натрия.

Пенообразователи должны удовлетворять требованиям ГОСТ 6948--54 и ГОСТ 9603--61.

Воздушно-механическая пена состоит из пузырьков, оболочка которых образована из раствора пенообразователя. В пузырьках содержится (в зависимости от пенообразователя) воздуха до 90%, воды 9,5% и пенообразователя до 0,5%. Удельный вес пены от 0,11 до 0,17.

Получается воздушно-механическая пена с помощью специальных аппаратов (смесителей и воздушно-пенных стволов). Стойкость пены на основе пенообразователя ПО-1 составляет 30 мин, а на основе пенообразователя ПО-6-- не менее 60 мин. ВНИИПО разработана рецептура пенообразователя ПО-8 для получения воздушно-механической пены повышенной стойкости, которая используется при тушении нефтепродуктов" и полярных жидкостей (спирта, ацетона и др.).

Воздушно-механическую пену по кратности выхода подразделяют на пену нормальной и высокой кратности.

Пена нормальной кратности считается в том случае, когда из 1 л пенообразователя ПО-1 и 25 л воды образуется от 200 до 300 л пены, из 1 л пенообразователя ПО-6 и 25 л воды -- от 125 до 175 л.

Пена из пенообразователя ПО-6 более стойка, чем из пенообразователя ПО-1. Для получения пены нормальной кратности используют водные растворы пенообразователей ПО-1 (3--4% по объему) и ПО-6 (4--6% по объему).

Пенообразователь ПО-1 считается годным, если кратность выхода пены не менее 10, стойкость ее не менее 30 мин, а пенообразователь ПО-6,-- если кратность выхода пены не менее 5, стойкость ее не менее 60 мин.

Пена нормальной кратности хорошо удерживается на вертикальных поверхностях, поэтому она может применяться для защиты материалов и конструкций от загорания при воздействии лучистой теплоты.

Воздушно-механическую пену нормальной кратности целесообразно применять для тушения нефтепродуктов с температурой вспышки 45° С и выше, находящихся в емкостях, и нефтепродуктов с температурой вспышки 45° С и ниже (за исключением авиабензина), разлитых тонким слоем по твердому покрову или на поверхности воды.

Ее можно использовать также для тушения нефтепродуктов с температурой вспышки 45° С и ниже (за исключением бензина) в емкостях. Но при этом надо помнить, что для тушения нефтепродуктов с температурой вспышки 28° С и ниже на площади не более 100 м2 можно применять воздушно-механическую пену нормальной кратности на основе пенообразователя ПО-1, а на площади не более 400--500 м2 -- на основе пенообразователя ПО-6. Расстояние от верхней кромки борта емкости до зеркала жидкости должно быть не более 2 м. Это условие следует соблюдать также и при тушении нефтепродуктов с температурой вспышки от 28 до 45° С.

Пенообразователи неэффективны при тушении пожаров полярных жидкостей (спирта, эфира, ацетона).

Для тушения нефтепродуктов (бензина, керосина, сырой нефти, мазута) наряду с пенообразователем ПО-1 используют смачиватель НБ.

ВНИИПО разработан способ тушения нефтепродуктов в емкостях путем подачи воздушно-механической пены через слой горючего. В данном случае пожар можно тушить при любом уровне горючего в емкостях.

Пена высокой кратности на основе пенообразователей ПО-1 или ПО-6 вырабатывается, специальным генератором, работающим по принципу усиленного подсоса воздуха. Она может применяться для локализации пожаров твердых веществ, пламенного горения в помещениях. Высокую огнегасительную эффективность пена дает при тушении нефтепродуктов.

При тушении ею пламенного горения в помещениях происходит вытеснение дыма и продуктов сгорания, локализация очагов горения, создаются благоприятные условия для полного прекращения горения.

По мере заполнения помещений пеной высокой кратности температура в них быстро снижается в результате вытеснения горячих газов, прекращения горения и частичного охлаждения конструкций. Температура в горящем помещении, как свидетельствует практика, сразу же после подачи в него пены может снизиться с 1000° С и более до 65--50° С.

После заполнения помещения пеной температура в нем может вновь повыситься, так как нагретые конструкции перекрытий из-за кратковременного действия пены не успевают охлаждаться.

Пеной высокой кратности можно тушить лишь пламя вследствие наличия в ней большого количества воздуха и ограниченного времени ее подачи. Очаги тления твердых веществ при этом остаются непогашенными.

Под воздействием теплоты, выделяющейся при тлении, пена быстро разрушается.

Полная ликвидация очагов тления зависит от интенсивности и времени подачи пены и от того, насколько быстро она проникает к местам горения.

Практически пена высокой кратности нетеплопроводна. Колебания температуры окружающей среды от --30 до +30° С существенного влияния на качество пены не оказывают. При низких температурах (ниже --15° С) стойкость пены несколько снижается, хотя на поверхности ее образуется устойчивая корка. Высокая температура ускоряет разрушение пены.

Пена не оказывает вредного действия на большинство материалов и оборудование, не создает дополнительной нагрузки на конструкции в связи с незначительным объемным весом ее.

Пенообразующий раствор является хорошим смачивателем и поэтому свободно проникает внутрь материалов, в том числе волокнистых.

При пользовании воздушно-механической пеной значительно облегчается труд пожарных во время тушения пожара. Поэтому ее широко применяют при тушении пожаров, она является основным средством пожаротушения.

При тушении нефтепродуктов необходимо применять расчетное количество как химической, так и воздушно-механической пены. Указания по их расчету излагаются в приложении 4 «Правил пожарной безопасности на речном транспорте Министерства речного флота РСФСР».

Углекислота (техническое название двуокиси углерода) С02 -- бесцветный газ с едва ощутимым запахом, не горит и не поддерживает горения, не проводит ток. Огнегасительная концентрация паров углекислоты в воздухе должна быть 22,4% (по объему). При 0°С и давлении 36 кгс/см2 легко сжижается, переходя из газообразного состояния в жидкое.

Теплота испарения жидкой углекислоты 47,7 кал/кг. При быстром испарении жидкой углекислоты образуется твердая (снегообразная) углекислота. Удельный вес такой углекислоты при температуре --79° С равен 1,53. Углекислота или углекислый снег, направленные в зону пожара, снижают концентрацию кислорода в ней до такой величины, при которой невозможно горение, а также охлаждают горящее вещество и окружающую среду, в результате чего горение прекращается.

Углекислота применяется для тушения пожаров в закрытых помещениях (в условиях ограниченного воздухообмена) и на сравнительно небольшой площади непосредственно на /воздухе. Она используется для тушения пожаров электроустановок под напряжением.

При тушении пожаров в закрытых помещениях расходуется 0,495 кг/м3 углекислоты, а в наиболее пожароопасных помещениях --0,594 /кг/м3.

Пламенное горение в грузовом трюме судна при применении углекислоты прекращается в тех случаях, когда процентное содержание кислорода в нем снижается до 14%. Тление же при этом продолжается. Для его прекращения содержание кислорода в трюме необходимо довести до 5%. Углекислоту надо подавать в трюм до тех пор, пока полностью не прекратится тление, а оно может продолжаться от нескольких часов до одних-двух суток.

Углекислота как самостоятельное огнегасительное средство в стационарных противопожарных установках на речном транспорте применяется редко. Она заменяется более эффективными средствами -- галоидуглеводородами: бромистым этилом, бромистым метиленом, тетрафтордибромэтаном, которые входят в составы таких огнегасительных смесей, как «3,5», СЖБ и однокомпонентный фреон-114В2.

пожар тушение пена огнегасительный

Основные способы тушения пожаров

Рассмотрим основные способы тушения пожаров и применяемые при этом огнегасительные вещества.

Для тушения пожара используют следующие средства: разбавление воздуха негорючими газами до таких концентраций кислорода, при которых горение прекращается; охлаждение очага горения ниже определенной температуры (температуры горения); механический срыв пламени струей жидкости или газа; снижение скорости химической реакции, протекающей в пламени; создание условий огнепреграждения, при которых пламя распространяется через узкие каналы.

Огнегасительньными называют вещества, которые при введении в зону сгорания прекращают горение. Основные огнегасящие вещества и материалы - это вода и водяной пар, химическая и воздушно-механическая пены, водные растворы солей, негорючие газы, галоидоуглеводородные огнегасительные составы и сухие огнетушащие порошки.

Химические и воздушно-механические пены применяют для тушения твердых и жидких веществ, не взаимодействующих с водой. Одной из основных характеристик этих пен является их кратность, т. е. отношение объема пены к объему ее жидкой фазы.

Средства пожаротушения подразделяют на первичные, стационарные и передвижные (пожарные автомобили).

Первичные средства используют для ликвидации небольших пожаров и загорания. Их обычно применяют до прибытия пожарной команды. К первичным средствам относятся передвижные и ручные огнетушители, переносные огнегасительные установки, внутренние пожарные краны, ящики с песком, асбестовые покрывала, противопожарные щиты с набором инвентаря и др.

Огнетушители маркируются буквами, характеризующими вид огнетушителя по разряду, и цифрой, обозначающей его объем в литрах.

Воздушно-пенные огнетушители маркируются как ОВП (например, ручные ОВП-5 и ОВП-10). Их используют для тушения загораний ЛВЖ, ГЖ, большинства твердых материалов (кроме металлов). Их нельзя использовать для тушения электроустановок, находящихся под напряжением.

Стационарные установки предназначены для тушения пожаров в начальной стадии их возникновения. Они запускаются автоматически или с помощью дистанционного управления. Эти установки заправляются следующими огнетушащими средствами: водой, пеной, негорючими газами, порошковыми составами или паром.

К автоматическим установкам водяного пожаротушения относятся спринклерные и дренчерные установки. Отверстия, через которые вода поступает в помещение при пожаре, запаяны легкоплавкими сплавами. Эти сплавы плавятся при определенной температуре и открывают доступ распыляемой воде.

Каждая головка орошает помещение и находящееся в нем оборудование площадью до 9 м2.

В тех случаях, когда целесообразно подавать воду на всю площадь помещения, в котором возник пожар, применяют дренчеры, которые также представляют собой систему труб, заполненную водой, оборудованную распылительными головками-дренчерами. В них в отличие от спринклерных головок выходные отверстия для воды (диаметром 8, 10 и 12,7 мм) постоянно открыты. Спринклерные головки приводят в действие открыванием клапана группового действия, который в обычное время закрыт. Он открывается автоматически или вручную (при этом дается сигнал тревоги). Каждая спринклерная головка орошает 9-12 м2 площади пола.

Система работает следующим образом.

1. Пожарный датчик (извещатель) реагирует на появление дыма (дымовой извещатель),

2. на повышение температуры воздуха в помещении (тепловой извещатель),

3. на излучение открытого пламени (световой извещатель) и т.д.

4. и подает сигнал включения системы подачи огнетушащих веществ, которые подаются к очагу загорания.

Пожарные датчики (извещатели) могут быть как ручные (пожарные кнопки, устанавливаемые в коридорах помещений и на лестничных площадках), так и автоматические. Последние, как уже сказано выше, подразделяются на тепловые, дымовые и световые. В дымовых извещателях используют два основных способа обнаружения дыма - фотоэлектрический и радиоизотопный. Так, дымовые фотоэлектрические (ИДФ-1М) и полупроводниковые (ДИП-1) действуют на принципе рассеивания частицами дыма теплового излучения. Радиоизотопные извещатели дыма (РИД-1) основаны на эффекте ослабления ионизации межэлектродного промежутка заряженными частицами, входящими в состав дыма. Один дымовой извещатель устанавливается на 65м2 защищаемой площади. Имеются комбинированные извещатели (КИ), реагирующие на теплоту и дым.

Сигнал от пожарных извещателей передается на пожарные станции, наиболее распространенные из них - ТЛО-10/100 (тревожная лучевая оптическая) и «Комар - сигнал 12 AM» (концентратор малой вместимости). В качестве передвижных средств пожаротушения используются пожарные автомобили (автоцистерны и специальные).

Хранение пенообразователя

При поступлении концентрированного пенообразователя необходимо убедиться в наличии документа, удостоверяющего его качество и количество.

После этого подготавливается схема заполнения емкостей и включается насос по перекачке концентрированного пенообразователя. По окончании перекачки пенообразователя восстанавливается первоначальная схема рециркуляции.

Перед заправкой АУПП необходимо проверить качество концентрата пенообразователя или его готового раствора по методике, приведенной в работе «Порядок применения, транспортирования, хранения и проверки качества пенообразователей для тушения пожаров. (Инструкция)». М.: ВНИИПО МВД СССР, 1989). Анализ раствора пенообразователя проводится в лаборатории энергопредприятия.

В дальнейшем качество концентрата пенообразователя или его водного раствора в АУПП следует проверять один раз в полугодие.

При кратности пены, полученной в лабораторных условиях, менее 5 или ее стойкости менее 3 мин пенообразователь и его водный раствор заменить.

Непригодный раствор пенообразователя по соответствующей схеме может подаваться через паромеханические мазутные форсунки в топки работающих котлов для сжигания, или утилизироваться иным способом, не противоречащим экологическим требованиям.

После срабатывания АУПП дальнейшее использование пенообразователя или его водного раствора разрешается в зависимости от количества остатка и его качества. Не разрешается оставшийся пенообразователь или его водный раствор смешивать с пенообразователем других марок. Перед заливом емкости новым пенообразователем необходимо проверить его качество, если оно не проверялось более 3 мес.

Хранение пенообразователей в железобетонных резервуарах не рекомендуется.

Запасы чистой воды могут храниться в бетонных, железобетонных, металлических и других резервуарах.

Резервуары для хранения запасов водного раствора пенообразователей или воды должны быть оборудованы автоматическими уровнемерами с выводом показаний на щит управления.

Проверка уровня водного раствора пенообразователя или воды должна проводиться ежедневно с регистрацией в «Журнале учета технического обслуживания и ремонта установки пожаротушения».

При снижении уровня водного раствора пенообразователя или воды за счет испарений следует добавить воду. При наличии утечек установить место повреждений резервуара и устранить утечки, затем проверить качество оставшегося пенообразователя.

Готовый водный раствор пенообразователей в резервуарах и в сети трубопроводов должен перемешиваться не реже одного раза в три месяца.

Вода для приготовления раствора и раствор не должны содержать механических примесей, которые могут забить трубопроводы, дроссельные шайбы и сетки парогенераторов. Вода для приготовления распора должна отвечать требованиям, предъявляемым к питьевой воде.

Для предупреждения загнивания и цветения воды ее рекомендуется дезинфицировать хлорной известью из расчета 100 г извести на 1 м 3 воды. Готовый водный раствор пенообразователя дезинфекции не подлежит.

Замена воды в резервуаре должна производиться ежегодно. При замене воды или готового водного раствора пенообразователя днище и внутренние стенки резервуара очищаются от грязи и наростов, поврежденная окраска восстанавливается или полностью обновляется.

Заключение

В моей работе подробно рассказано о воздушно-механической пене. Материал позволяет сравнивать и оценивать различные огнетушащие вещества. И результаты этого сравнения говорят нам, что такая пена - далеко не лучшее средство пожаротушения.

Малое деструктивное действие и общая, более высокая эффективность, в большинстве случаев делают ее более эффективной, чем вода. Однако, с другой стороны, она хуже гасит тепловую энергию.

В моей работе указано, что одно из самых лучших ОВ - это газ, который, смешиваясь в воздухе, не дает нужный состав для продолжения горения. Но в разных условиях его применение невозможно, и более эффективной становится воздушно - механическая пена.

Окончательным выводом можно сказать, что нет лучших или худших ОВ, есть правильное и неправильное их применение. И наше дело, как специалистов, использовать наиболее подходящие для данной ситуации вещества либо правильно их комбинировать.

Список источников

1. Википедия

2. Портал 0-1.ru

3. Большая Энциклопедия Нефти Газа

4. Интернет-клуб «Кубрик»

5. ГОСТ 6948--54

6. ГОСТ 9603--61

7. Российская энциклопедия по охране труда: В 3 т. -- 2-е изд., перераб. и доп. -- М.: Изд-во НЦ ЭНАС,2007.

8. «Порядок применения, транспортирования, хранения и проверки качества пенообразователей для тушения пожаров. (Инструкция)». М.: ВНИИПО МВД СССР, 1989).

9. Инструкция по эксплуатации установок пожаротушения с применением воздушно-механической пены (РД 34.49.502-96)


Подобные документы

    Пожаротушение как комплекс мер, направленных на ликвидацию пожаров. Основные способы пожаротушения. Выбор способа гашения и его подачи в зависимости от класса пожара. Вещества, применяемые для тушения. Технические характеристики переносных огнетушителей.

    реферат , добавлен 24.03.2009

    Характеристика воздушно-механической пены, галоидированных углеводородов, огнетушащих порошков. Классификация пожаров и рекомендуемые огнетушащие средства. Химические, воздушно-пенные, углекислотные, углекислотно-брометиловые и аэрозольные огнетушители.

    лабораторная работа , добавлен 19.03.2016

    Пожарная защита и способы тушения пожаров. Огнетушащие вещества и материалы: охлаждение, изоляция, разбавление, химическое торможение реакции горения. Мобильные средства и установки пожаротушения. Основные виды автоматических установок пожаротушения.

    реферат , добавлен 20.12.2010

    Организация тушения пожара. Средства и способы тушения пожара. Методика расчета сил и средств. Использование стационарных систем тепловой защиты и тушения пожара. Горение жидкостей с открытой поверхности, паров жидкостей и газов в виде факелов.

    курсовая работа , добавлен 13.02.2015

    Классификация пожаров и способы их тушения. Анализ существующих на данный момент огнетушащих веществ, их характеристики и способы применения в ходе ликвидации пожаров. Огнетушащий эффект пены. Устройство, назначение и принцип работы пенных огнетушителей.

    реферат , добавлен 06.04.2015

    Особенности территориального размещения Дворца искусств. Изучение архитектурно-строительного плана, схем установки пожаротушения и электрокоммуникаций. Выбор и обоснование места возникновения возможного пожара. Расчет сил и средств для его тушения.

    курсовая работа , добавлен 13.10.2010

    Пренебрежение нормами пожарной безопасности как причина проблемы пожаров на объектах. История возникновения установок пожаротушения. Классификация и применение автоматических установок тушения пожара, требования к ним. Установки пенного пожаротушения.

    реферат , добавлен 21.01.2016

    Оперативно-тактическая характеристика кабельных галерей, кабельных полуэтажей КРУ (комплектное распределительное устройство) и центрального пульта управления Саратовской ГЭС. Организация тушения пожаров в кабельных галереях и полуэтажах электростанций.

    реферат , добавлен 17.03.2010

    Причины возникновения пожаров. Меры пожарной безопасности при эксплуатации электроустановок, проведении техпроцессов, использовании горючих веществ. Огнегасительные средства и техника тушения пожаров. Системы оповещения людей и пожарной сигнализации.

    реферат , добавлен 04.06.2011

    Общие сведения о резервуарах и парках хранения ЛВЖ и ГЖ и пожарах в них. Требования техники безопасности при тушении нефтепродуктов в наземных резервуарах. Нормативная интенсивность подачи пены низкой кратности для тушения пожаров нефтепродуктов.

© 2024 bugulma-lada.ru -- Портал для владельцев автомобилей