При измерении электрического напряжения вольтметром. Как измерять напряжение вольтметром. V – раздел

Главная / Защита\Угоны

Вольтметр - это прибор, который служит для измерения напряжения на участке цепи. Как правильно работать с этим прибором, что нужно учитывать при выборе вольтметра, какие еще бывают приборы для измерения напряжения в сети, давайте разберемся.

Напряжение

Напряжением называют физическую величину, выражающую работу, которая была затрачена для пробного электрического заряда из одной точки электрической цепи в другую. Или, другими словами, это энергия, расходуемая при перемещении положительного заряда из точки с малым потенциалом в точку с большим потенциалом.

Оно бывает двух видов: постоянное и переменное. Постоянное напряжение характерно для цепей электростатики или постоянного тока , а переменное – для схем с переменным и суисоидальным током. Данная физическая величина измеряется в вольтах, а его обозначение: U.

Эту величину можно находить по следующим формулам:

  • U= I*R
  • U= P/I
  • U=√P*R

Где U - напряжение, I – с ила тока, R – сопротивление, P – мощность.

Но значение U можно узнать, не используя этих формул, если провести специальные измерения. Для этого надо просто уметь пользоваться вольтметром.

Он является простейшим прибором для измерения напряжения. На уроках физики в школах детям часто рассказывают об особенностях данного устройства , учат проверять напряжение в электрической цепи. С помощью него можно узнать не только напряжение, но и сопротивление, если знать специальные формулы. Вольтметром удобно пользоваться, и он несложен в устройстве, поэтому вольтметр остается самым лучшим способом измерения U в домашних условиях.

Классификация вольтметров

Они бывают электромеханическими (такие приборы являются наиболее чувствительными и точными), электронными, принцип действия которых заключается в преобразовании переменного напряжения в постоянное, и цифровыми.

Исходя из назначения, вольтметры могут быть импульсными, постоянного или же переменного тока . А по принципу применения - щитовыми и переносными. Перед использованием прибора нужно проверять, к какому из типов они относятся, чтобы провести правильные измерения.

Немного истории

Первый в истории вольтметр был изобретен русским физиком Г.В. Рихманом в 1754 году и назывался «указателем электрической силы ». Современные электростатические вольтметры основаны на принципах этого устройства.

Строение вольтметра

Прежде чем приступать к измерению напряжения, следует изучить, как работает вольтметр.

Его основные элементы - это корпус, клемма, стрелка и шкала. На клеммах обычно стоит знак «плюс» или «минус» или же они помечены цветом (плюс - красный цвет, минус - синий или черный цвет). Часто на этом приборе можно заметить букву «V» . Когда прибор служит для цепей с переменным током, то на циферблате изображается волнистая линия, а когда для цепей с постоянным током - линия прямая. Иногда используются обозначения АС (для измерения переменного тока) и DC (для измерения постоянного тока). В приборах для переменного тока полярности нет.

Классический вольтметр, который на данный момент немного устарел, состоит из катушки тоненькой подковообразной проволоки с железной стрелкой, которая располагается между концами магнита. Стрелка перемещается на оси. Ток идет по катушке , и намагниченная стрелка перемещается из-за силы тока. Чем сила тока больше, тем больше отклоняется стрелка. Можно заметить, что устройство этого прибора не очень сложное. Весь его принцип основан на простых законах физики.

Как пользоваться вольтметром

Вольтметр всегда подключается параллельно участку цепи, т. к. такое подключение уменьшает ток. Прибор может провести измерения напряжения только на определенном участке электрической цепи. При работе с ним нужно всегда соблюдать полярность. Провода прикручивают к винтам с гайками. У приборов, рассчитанных на постоянное напряжение , контакты обозначены знаками «плюс» и «минус». Это что касается стрелочного вольтметра. В электронных моделях все гораздо проще: там нет проводов. Более подробно можно познакомиться с принципом работы вольтметра, посмотрев видео.

Как работать вольтметром

Перед тем как проводить измерения нужно проверить, подходит ли данный прибор для них. В первую очередь необходимо определить максимально допустимую величину измерений для данного вольтметра. Для этого достаточно просто найти наибольшее числовое значение на шкале вольтметра. Далее следует уточнить , в каких единицах измеряет вольтметр. Это могут быть вольты, микровольты или милливольты. Пренебрежение этим пунктом может привести к тому, что прибор начнет дымиться после подключения к сети, значение напряжения которой во много раз выше допустимого.

Если напряжение в электрической цепи уже известно и превышает шестьдесят вольт, то нужно использовать специальные диэлектрические перчатки и щупы с хорошей изоляцией. Безопасное напряжение для человека - около 42 вольт при нормальных условиях и около 11 в неблагоприятных условиях (повышенная влажность , повышенная температура, железные предметы поблизости и т. д.).

Вольтметр и автомобиль

В машине этот прибор используется по двум основным причинам: для того, чтобы следить за зарядкой аккумулятора и контролировать просадки напряжения в бортсети. Для полного контроля просадки питания, можно установить два вольтметра: один - для подключения к аккумулятору, а второй – для подключения к клеммам усилителей.

С помощью него можно измерять ток в сети автомобиля. Кузов машины имеет отрицательный заряд (знак «-»), значит, к нему подсоединяется клемма с минусовым полюсом. Плюсовую клемму подключают к «положительному» генератору. Таким образом измеряют напряжение в автомобиле. Обычно оно имеет значение около четырнадцати вольт. Для подключения лучше использовать толстые провода: они уменьшают погрешность в измерениях. Основные нормы напряжения:

  • Для заглушенного двигателя 12,2 – 12,6 вольт
  • Для заведенного двигателя 13,6 – 14,4 вольт

Мультиметр

Напряжение может измерять и мультиметр. Перед тем как использовать это устройство, нужно обязательно ознакомиться с инструкцией.

Мультиметры, как правило, могут измерить три основные величины: силу тока, сопротивление и напряжение. Они могут быть аналоговыми и цифровыми.

Некоторые мультиметры могут измерять и:

Таким образом, возможности мультиметра определяются их моделью и типом. Абсолютно любой мультиметр может измерить напряжение, силу тока (постоянную) и сопротивление.

Классический вольтметр удобен в использовании и несложен в своем устройстве. Он всегда подключается параллельно к участку цепи. Всегда лучше сначала собрать цепь, а потом подсоединять к ней вольтметр. В работе с этим прибором очень важно соблюдать полярность . С помощью него можно измерять напряжение в машине. Никогда не надо забывать, что напряжение (как высокое, так и низкое) опасно не только для здоровья, но и для жизни человека.

Поэтому при работе с электроприборами нужно соблюдать технику безопасности: пользоваться специальными перчатками, работать только в нормальных условиях и т. д. Перед использованием, нужно проверять прибор.

Сила тока измеряется в амперах , поэтому прибор, который измеряет силу тока называют амперметром . Напряжение (или разность потенциалов между двумя точками в электрической цепи) измеряется в вольтах , поэтому прибор, измеряющий напряжение называют вольтметром. Чтобы иметь количественное представление о величинах напряжений и токов, протекающих в разных приборах, приведем несколько примеров.

1. Лампа накаливания мощностью Р = 60 Вт, работающая от сети с напряжением U = 220 В. Силу тока через такую лампу можно рассчитать по формуле А.

2. Электрический чайник мощностью Р = 2200 Вт (U = 220 В). Сила тока равна А.

3. Сила тока, протекающего через резистор с сопротивлением, на который подано напряжение 1,5 В (от обычной батарейки), равна по закону Ома А.

Трех примеров достаточно, чтобы убедиться в очень широком диапазоне значений токов (и напряжений) и в необходимости иметь амперметры (и вольтметры) с разной ценой деления. Для измерения малых токов созданы миллиамперметры, обозначаемые символом (см. рис.16а), и микроамперметры (см. рис.16б), обозначаемые.

Приборы, изображенные на рис.16, имеют разный диапазон измерений. Как видно из рисунка, максимальный ток для миллиамперметра всего 5 мА, а для микроамперметра 50 мкА. Если ток будет больше этих значений, то стрелка "зашкалит", то есть уйдет максимально вправо и остановится, удерживаемая упором. Особо следует отметить то, что в отключенном состоянии стрелка прибора должна указывать на нулевое деление. Если прибор "сбит", то есть в отсутствие тока показывает ненулевое значение, то надо с помощью отвертки или просто ногтем повернуть колесико настройки нуля (см. рис.16в).

Теперь рассмотрим приборы, диапазон измерений которых можно менять.


Рис.17. Двухдиапазонный амперметр (а) и 4-х диапазонный вольтметр (б)

На рис.17а изображен 2-х диапазонный амперметр, для которого с помощью переключателя можно установить максимальный ток в 1 А или 2 А (белая точка на основании ключа указывает на 1 А), что будет соответствовать на шкале амперметра максимальному значению 100 делений. Переводя ключ амперметра из положение "1 А" в положение "2 А", мы изменяем цену деления с w = 0,01 А до w = 0,02 А.

На рис.17б изображен 4-х диапазонный вольтметр с четырмя возможными пределами измерения напряжения в 7,5 В; 15 В; 30 В и 60 В (белая точка на основании ключа показывает 15 В). Учитывая, что шкала вольтметра рассчитана на 150 делений, то переводя ключ вольтметра из одного положения в другое, мы изменяем цену деления w следующим образом:

"7,5V" (w=0,05 В); "15V" (w=0,1 В); "30V" (w=0,2 В); "60V" (w=0,4 В).

Помню такой случай из своего опыта начинающего электрика - как-то захотелось мне собрать простенькую схемку электронного передатчика. Собрал детали, намотал катушки, спаял всё воедино по имеющейся электрической схеме. Включаю, а он не работает. Естественно, мне стало интересно, что к чему, и какие процессы протекают внутри схемы. Вижу на схеме указаны рабочие значения силы тока перечёркнутым крестиком на цепях. Не мог понять, что это за схематическое обозначение . Пришёл ко мне друг и подсказал, что к чему. После измерений нашёл ошибку и передатчик заработал. Теперь хочу с такими же новичками поделится «великим секретом» измерения электрического тока , и растолковать, как правильно измерять силу тока.

Итак, электрический ток представляет собой упорядоченное движение заряженных частиц внутри того или иного электропроводника. Это сродни протоку воды внутри водопроводной трубы . Если в случае воды ставятся движущиеся лопасти, которые вращает этот поток, то в случает электрического тока поток заряженных частиц пропускают через дополнительную электрическую цепь, находящаяся в измерители этого пока. На этой цепи появляются определённые электрические параметры, такие как падение напряжения на данном участке (определённое значение разности потенциалов) и сопротивление. Поскольку эти значения напряжения уже принадлежать схеме измерителя, то он легко может их преобразовать в числовую наглядную форму.

На практике измерения электрического тока производят так. В случае измерения постоянной силы тока измерительный прибор (амперметр) включают в разрыв конкретного участка электрической цепи (именно это обозначает крестик на принципиальной схеме с указанием нормального рабочего значения силы тока, про что я говорил выше), в которой производятся измерения. Ток начинает протекать через электрический элемент амперметра и реагировать на изменение электрических параметров внутри себя. В случае измерения переменного тока возникает ещё один способ измерения - по средствам токовых клещей.

Они действуют так - главная часть представлена в виде раздвижного трансформатора, который обхватывает токонесущий провод. Вокруг проводника с переменным током существует переменное электромагнитное поле, что при протекании вокруг магнитопровода индуцирует в нём магнитный поток. На другом конце этого трансформатора имеется измерительная катушка, на которой появляется значение напряжения. Оно преобразовывается и выводится на экран.

Как электрики измеряют на деле силу тока? Они имеют два вида амперметров. Для электроизмерений силы тока относительно небольших значений (в обычных электрических схемах управления электрооборудование) электрик имеет при себе обычный мультиметр, внутри которого присутствует функция измерения силы тока (и переменного и постоянного) через разрыв электрической цепи. На таких приборах максимальное значение силы тока лежит в пределах 20 ампер. Если существует необходимость измерить токи больших значений, да при условии работающей электрической системы, да без возможности разрыва той или иной части электроцепи, то тут на помощь приходят токовые клещи . Ими достаточно обхватить нужный токонесущий провод или шину, как они сразу же покажут рабочее значение силы переменного тока на данном участке силовой цепи.

Следует не забывать, что сам амперметры при его подсоединении к разорванному участку цепи вносит в схему дополнительное электрическое сопротивление . Если она не критично для работы системы, то на это можно не обращать внимания. Но если даже небольшие падения напряжения имеют решающее значение для работы электротехники, то следует использовать амперметры с минимальным внутренним сопротивлением. И не забывайте после измерения силы тока переключать провода мультиметра на клеммы измерения напряжения, так как в противном случае может оказаться, что вы измеряете величину напряжения прибором, у которого внутреннее сопротивление равно нулю. Это, естественно, вызовет короткое замыкание , и неприятности.

В радиолюбительской практике это наиболее распространенный вид измерений. Например, при ремонте телевизора измеряются напряжения в характерных точках устройства, а именно на выводах транзисторов и микросхем. Если есть под рукой принципиальная схема, и на ней указаны режимы транзисторов и микросхем, то найти неисправность опытному мастеру не составит труда.

При налаживании конструкций, собранных своими руками, без измерения напряжений обойтись нельзя. Исключения составляют лишь классические схемы, про которые пишут примерно так: «Если конструкция собрана из исправных деталей, то наладки не требуется, заработает сразу».

Как правило, это классические схемы электроники, например, . Такой же подход может получиться даже к усилителю звуковой частоты, если он собран на специализированной микросхеме. Как наглядный пример TDA 7294 и еще много микросхем этой серии. Но качество «интегральных» усилителей невелико, и истинные ценители строят свои усилители на дискретных транзисторах, а порою на электронных лампах. И вот тут-то без налаживания и связанных с этим измерений напряжений просто не обойтись.

Как и что предстоит измерять

Показано на рисунке 1.

Рисунок 1.

Возможно, кто-то скажет, мол, что тут можно измерять? И какой смысл собирать подобную цепь? Да, практического применения для такой схемы найти, наверно, трудно. А для познавательных целей она вполне подойдет.

Прежде всего, следует обратить внимание на то, как подключается вольтметр. Поскольку на рисунке показана цепь постоянного тока, то и вольтметр подключается с соблюдением полярности, указанной на приборе в виде знаков «плюс» и «минус». В основном это замечание справедливо для стрелочного прибора: при несоблюдении полярности стрелка отклонится в обратную сторону, по направлению к нулевому делению шкалы. Так что получится какой-то отрицательный ноль.

Цифровые приборы, мультиметры, в этом плане более демократичны. Даже если подключены в обратной полярности, напряжение все равно будет измерено, только на шкале перед результатом появится знак «минус».

Еще на что следует обратить внимание при измерении напряжений это диапазон измерений прибора. Если предполагаемое напряжение находится в пределах, например, 10…200 милливольт, то такому диапазону соответствует шкала прибора 200 милливольт, а измерение упомянутого напряжения по шкале 1000 вольт вряд ли даст вразумительный результат.

Так же следует выбирать диапазон измерений и в других случаях. Для измеряемого напряжения 100 вольт вполне подойдет диапазон 200В и даже 1000В. Результат будет один и тот же. Это что касается .

Если же измерения производятся старым добрым стрелочным прибором, то для измерения напряжения 100В следует выбрать диапазон измерений, когда показания находятся в середине шкалы, что позволяет осуществить более точный отсчет.

И еще одна классическая рекомендация по использованию вольтметра, а именно: если величина измеряемого напряжения неизвестна, то измерения следует начинать, установив вольтметр на самый большой диапазон. Ведь если измеряемое напряжение будет 1В, а диапазон будет 1000В, самая большая опасность в неверных показаниях прибора. Если же получится наоборот, - диапазон измерений 1В, а измеряемое напряжение 1000, покупки нового прибора просто не избежать.

Что покажет вольтметр

Но, пожалуй, вернемся к рисунку 1, и попробуем определить, что, же покажут оба вольтметра. Для того, чтобы это определить, придется . Задачу можно решить за несколько шагов.

Во-первых, рассчитать ток в цепи. Для этого надо напряжение источника (на рисунке это гальваническая батарея с напряжением 1,5 В) разделить на сопротивление цепи. При последовательном соединении резисторов это будет просто сумма их сопротивлений. В виде формулы это выглядит примерно так: I = U / (R1 + R2) = 4,5 / (100 + 150) = 0,018 (А) = 180 (мА).

Маленькое замечание: если выражение 4,5 / (100 + 150) скопировать в буфер обмена, затем вставить в окно виндоус-калькулятора, то после нажатия клавиши «равно» будет получен результат вычислений. На практике вычисляются еще более сложные выражения, содержащие квадратные и фигурные скобки, степени и функции.

Во-вторых, получить результаты измерений, как падение напряжения на каждом резисторе:

U1 = I * R1 = 0,018 * 100 = 1,8 (В),

U2 = I * R2 = 0,018 * 150 = 2,7 (В),

Для проверки правильности вычислений достаточно сложить оба получившиеся значения падения напряжений. Сумма должна быть равна напряжению батареи.

Возможно, у кого-то может возникнуть вопрос: «А если делитель будет не из двух резисторов, а из трех или даже из десяти? Как определить падение напряжения на каждом из них?». Точно так же, как и в описанном случае. Сначала надо определить общее сопротивление цепи и рассчитать общий ток.

После чего этот уже известный ток просто умножить на . Иногда такие вычисления делать приходится, но тут тоже есть одно но. Чтобы не сомневаться в полученных результатах ток в формулы следует подставлять в Амперах, а сопротивление в Омах. Тогда, вне всяких сомнений, результат получится в Вольтах.

Сейчас все привыкли пользоваться приборами китайского производства. Но это не говорит о том, что качество у них никудышное. Просто в отечестве никто не додумался до производства собственных мультиметров, а стрелочные тестеры делать, видимо, разучились. Просто обидно за державу.

Рис. 2. Мультиметр DT838

Когда-то в инструкциях к приборам указывались их технические характеристики. В частности для вольтметров и стрелочных тестеров это было входное сопротивление, и указывалось оно в Килоомах/Вольт. Были приборы с сопротивлением 10 К/В и 20 К/В. Последние считались более точными, поскольку меньше подсаживали измеряемое напряжение и показывали более точный результат. Сказанное можно подтвердить рисунком 3.

Рисунок 3.

Действующее напряжение U составляет 0,707 амплитудного напряжения Uм.

U = Uм/√2 = 0,707 * Uм, откуда можно сделать вывод, что Uм = U * √2 = 1,41 * U

Здесь уместно привести широко распространенный пример. При измерении переменного напряжения прибор показал 220В, значит, амплитудное значение по формуле получится

Uм = U * √2 = 1,41 * U = 220 * 1,41 = 310В.

Этот расчет подтверждается каждый раз, когда сетевое напряжение выпрямляется диодным мостом после которого стоит хотя бы один электролитический конденсатор: если померить постоянное напряжение на выходе моста, то прибор покажет как раз 310В. Эту цифру следует запомнить, она может пригодиться при разработке и ремонте импульсных блоков питания.

Указанная формула справедлива для всех напряжений, если они будут иметь синусоидальную форму. Например, после понижающего трансформатора имеется 12В переменки. Тогда после выпрямления и сглаживания на конденсаторе получится

12 * 1,41 = 16,92 почти 17В. Но это если не подключена нагрузка. При подключенной нагрузке постоянное напряжение подсядет почти до 12В. В случае, когда форма напряжения иная, чем синусоида эти формулы не работают, приборы показывают не то, что от них ожидалось. На этих напряжениях измерения производятся другими приборами, например, осциллографом.

Еще один фактор, влияющий на показания вольтметра это частота. Например, цифровой мультиметр DT838 согласно своих характеристик меряет переменные напряжения в диапазоне частот 45…450Гц. Несколько лучше в этом плане выглядит старенький стрелочный тестер ТЛ4.

В диапазоне напряжений до 30В его частотный диапазон составляет 40…15000Гц (почти весь звуковой диапазон, можно пользоваться при настройке усилителей), но с увеличением напряжения допустимая частота падает. В диапазоне 100В это 40…4000Гц, 300В 40…2000Гц, а в диапазоне 1000В всего 40…700Гц. Вот тут уже бесспорная победа над цифровым прибором. Эти цифры также справедливы лишь для напряжений синусоидальной формы.

Хотя иногда и не требуется никаких данных о форме, частоте и амплитуде переменных напряжений. Например, как определить работает гетеродин коротковолнового приемника или нет? Почему приемник ничего не «ловит»?

Оказывается, все очень просто, если воспользоваться стрелочным прибором. Надо включить его на любой предел измерения переменных напряжений и одним щупом (!) коснуться выводов транзистора гетеродина. Если есть высокочастотные колебания, то они продетектируются диодами внутри прибора, и стрелка отклонится на некоторую часть шкалы.

Общие сведения. Необходимость измерения напряжения на практике возникает очень часто. В электротехнических и радиотехнических цепях и устройствах чаще всего измеряют напряжение постоянного и переменного (синусоидального и импульсного) тока.

Напряжение постоянного тока (рис. 3.5, а ) выражается, как . Источниками такого напряжения являются генераторы постоянного тока и химические источники питания.

Рис. 3.5. Временные диаграммы напряжений: постоянного (а), переменного синусоидального (б) и переменного импульсного (в) тока

Напряжение переменного синусоидального тока (рис. 3.5, б ) выражается как и характеризуется среднеквадратичным и амплитудным значениями:

Источниками такого напряжения являются низко- и высокочастотные генераторы , электросеть.

Напряжение переменного импульсного тока (рис. 3.5 в ) характеризуется амплитудным и средним (постоянная составляющая) значениями напряжения. Источником такого напряжения являются импульсные генераторы с сигналом разной формы.

Основной единицей измерения напряжения является вольт (В).

В практике электротехнических измерений широко используются дольные и кратные единицы:

Киловольт (1 кВ - В);

Милливольт (1мВ - В);

Микровольт (1 мкВ - В).

Международные обозначения единиц измерения напряжения приведены в Приложении 1.

В каталоговой классификации электронные вольтметры обознача-ются следующим образом: В1 — образцовые, В2 — постоянного тока, ВЗ — переменного синусоидального тока, В4 — переменной) импульс-ного тока, B5 — фазочувствительные, В6 — селективные, В7 — уни-версальные.

На шкалах аналоговых индикаторов и на лицевых панелях (на пе-реключателях пределов) отечественных и зарубежных электронных и электромеханических вольтметров применяются следующие обо-значения: V — вольтметры, kV — киловольтметры, mV — милливольт-метры, V — микровольтметры.

Измерение напряжения постоянного тока. Для измерения напря-жения постоянного тока используются электромеханические вольт-метры и мультиметры, электронные аналоговые и цифровые вольт-метры, электронные осциллографы.

Электромеханические вольтметры непосредственной опенки измеряемой величины составляют большой класс приборов аналого-вого типа и имеют следующие достоинства:

Возможность работы без подключения к источнику питания;

Малые габаритные размеры;

Меньшая цена (по сравнению с электронными);

Простота конструкции и удобство эксплуатации.

Чаще всего при электротехнических измерениях в сильноточных цепях используются вольтметры на основе электромагнитной и элек-тродинамической систем, в слаботочных цепях — магнитоэлектриче-ской системы . Поскольку все названные системы сами являются из-мерителями силы тока (амперметрами), то для создания на их основе вольтметров необходимо увеличить внутреннее сопротивление при-бора, т.е. подключить последовательно с измерительным механизмом добавочный резистор (рис. 3.6, а).


Вольтметр подключается к исследуемой цепи параллельно (рис. 3.6, б), и его входное сопротивление должно быть достаточно большим.

Для расширения диапазона измерения вольтметра также использу-ют добавочный резистор, который подключают к прибору последова-тельно (рис. 3.6, в).

Значение сопротивления добавочного резистора определяется по формуле:

Рис. 3.6. Схема создания вольтметра на основе амперметра (а ), подключение вольтметра к нагрузке (6 ), подключение добавочного резистора к вольтметру (в )

Где — число, показывающее, во сколько раз расширяется предел измерения вольтметра:

где — исходный предел измерения;

— новый предел измерения.

Добавочные резисторы, размещенные внутри корпуса прибора, называются внутренними, подключенные к прибору снаружи — внешними. Вольтметры могут быть многопредельными. Между пределом измерения и внутренним сопротивлением многопредельного вольтметра существует прямая зависимость: чем больше предел измерения, тембольше сопротивление вольтметра.

Электромеханические вольтметры имеют следующие недостатки:

Ограниченный диапазон измерения напряжений (даже в многопредельных вольтметрах);

Малое входное сопротивление, следовательно, большое собственное потребление мощности из исследуемой цепи.

Этими недостатками электромеханических вольтметров обусловлено предпочтительное использование для измерения напряжения в электронике электронных вольтметров.

Электронные аналоговые вольтметры постоянного тока построены по схеме, представленной на рис. 3.7. Входное устройство состоит из эмиттерного повторителя (для увеличения входного сопро-тивления) и аттенюатора — делителя напряжения.

Преимущества электронных аналоговых вольтметров по сравнению с аналоговыми очевидны:

Рис. 3.7. Структурная схема электронного аналогового вольтметра постоянного тока

Широкий диапазон измерения напряжений;

Большое входное сопротивление, следовательно, малое собствен-ное потребление мощности из исследуемой цепи;

Высокая чувствительность благодаря наличию усилителя на входе прибора;

Невозможность перегрузок.

Вместе с тем электронные аналоговые вольтметры имеют ряд не-достатков:

Наличие источников питания, большей частью стабилизирован-ных;

Большая, чем у электромеханических вольтметров, приведенная относительная погрешность (2,5-6%);

Большие массогабаритные размеры, более высокая цена.

В настоящее время аналоговые электронные вольтметры постоян-ного тока применяются недостаточно широко, так как по своим пара-метрам заметно уступают цифровым вольтметрам.

Измерение напряжения переменного тока.

Для измерения напря-жения переменного тока используются электромеханические вольт-метры и мультиметры, электронные аналоговые и цифровые вольт-метры, электронные осциллографы.

Рассмотрим недорогие и достаточно точные электромеханиче-ские вольтметры. Делать это целесообразно по частотным диапазо-нам.

На промышленных частотах 50, 100, 400 и 1000 Гц широко приме-няются вольтметры электромагнитной, электродинамической, ферро-динамической, выпрямительной, электростатической и термоэлектри-ческой систем.

На низких частотах (до 15-20 кГц) применяются вольтметры вы-прямительной, электростатической и термоэлектрической систем.

На высоких частотах (до единиц — десятков мегагерц) используют-ся приборы электростатической и термоэлектрической систем.

Для электротехнических измерений широко используются универ-сальные приборы — мультиметры.

Мультиметры (тестеры, ампервольтомметры, комбинированные приборы) позволяют измерять множество параметров: силу постоянного и переменного тока, напряжение постоянного и переменного тока, сопро-тивление резисторов, емкость конденсаторов (не все приборы), некото-рые статические параметры маломощных транзисторов ( , , и ).

Мультиметры выпускаются с аналоговым и цифровым отсчетом.

Широкое использование мультиметров объясняется следующими ихпреимуществами:

Многофункциональность, т.е. возможность использования в каче-стве амперметров, вольтметров, омметров, фарадомеров, измерителей параметров маломощных транзисторов:

Широкий диапазон измеряемых параметров благодаря наличию нескольких пределов измерения по каждому параметру;

Возможность использования в качестве переносных приборов, поскольку отсутствует сетевой источник питания;

Небольшие массогабаритные размеры;

Универсальность (возможность измерения переменных и постоянных токов и напряжений),

Мультиметры имеют также ряд недостатков:

Узкий частотный диапазон применимости;

Большое собственное потребление мощности из исследуемой 1 цепи;

Большая приведенная погрешность у аналоговых (1,5; 2,5 и 4) и у цифровых мультиметров;

Непостоянство внутреннего сопротивления на различных пределах 4 измерения силы тока и напряжения.

По отечественной каталоговой классификации мультиметры имеют обозначение Ц43 и далее номер модели, например, Ц4352.

Для определения внутреннего сопротивления аналогового мультиметра на включенном пределе измерения в паспорте прибора может 1 быть приведено удельное сопротивление. Например, в паспорте тестера Ц4341 удельное сопротивление = 16,7 кОм/В, пределы измерения по напряжению постоянного тока составляют 1,5 — 3 — 6 — 15 В.

В этом случае сопротивление мультиметра на пределе 6 В постоянного тока определяют по формуле:

В паспорте прибора могут быть приведены сведения, необходимые для расчета сопротивления по закону Ома .

Если тестер используется как вольтметр, то его входное сопротивление определяется по формуле:

где - выбранный предел измерения;

Значение силы тока в выбранном пределе (указанное на задней пане ли прибора или в его паспорте).

Если тестер используется как амперметр, то его входное сопротив-ление определяется по формуле:

Где — выбранный предел измерения;

значение напряжения, приведенное на задней панели прибора или в его паспорте.

Например, в паспорте тестера Ц4341 приведено падение напря-жения на приборе, равное 0,3 В в пределах 0,06 — 0,6 — 6 — 60 — 600 мА постоянного тока, и падение напряжения 1,3 В в пределах: 0,3 — 3 — 30 — 300 мА переменного тока. Входное сопротивление мультиметра в пределе 3 мА переменного тока составит

Электронные аналоговые вольтметры переменного тока по-строены по одной из структурных схем (рис. 3.8), которые различа-ются последовательностью расположения основных блоков - усили-теля и преобразователя (детектора) напряжения переменного тока в напряжение постоянного тока. Свойства этих вольтметров во многом зависят от выбранной схемы.

Рис. 3.8. Структурные схемы электронных аналоговых вольтметров переменного тока тина У—Д (а ) и типа Д—У (б)

Вольтметры первой группы - типа усилитель-детектор (У—Д) — имеют высокую чувствительность, что связано с наличием дополни-тельного усилителя. Поэтому все микро- и милливольтметры построе-ны по схеме У—Д. Однако частотный диапазон таких вольтметров неширок (до единиц мегагерц), так как создание широкополосного усилителя переменного тока связано с определенными трудностями. Вольтметры типа У—Д относятся к не универсальным (подгруппа ВЗ), т.е. могут измерять только напряжение переменного тока.

Вольтметры второй группы — типа детектор—усилитель (Д—У) -имеют широкий частотный диапазон (до единиц гигагерц) и низкую чувствительность. Вольтметры этого типа относятся к универсаль-ным (подгруппа В7), т.е. измеряют напряжение не только перемен-ного, но и постоянного тока; могут измерять напряжение значитель-ного уровня, так как обеспечить большое усиление с помощью УНТ несложно.

В вольтметрах обоих типов важную функцию выполняют преоб-разователи напряжения переменного тока в напряжение постоянного тока — детекторы, которые по функции преобразования входного на-пряжения в выходное можно классифицировать на три типа: ампли-тудного, среднеквадратичного и средневыпрямленного значения.

От типа детектора во многом зависят свойства прибора. Вольт-метры с детектором амплитудного значения являются самыми высо-кочастотными; вольтметры с детектором среднеквадратичного значе-ния позволяют измерять напряжение переменного тока любой формы; вольтметры с детектором средневыпрямленного значения пригодны для измерения напряжения только гармонического сигнала и являют-ся самыми простыми, надежными и недорогими.

Детектор амплитудного значения представляет собой устройство, напряжение на выходе которого соответствует амплитудному значе-нию измеряемого сигнала, что обеспечивается путем запоминания на-пряжения на конденсаторе.

Чтобы цепь реальной нагрузки любого детектора эффективно от-фильтровывала полезный сигнал и подавляла нежелательные высоко-частотные гармоники, следует выполнить условие:

Или , (3.12)

где — емкость выходного фильтра;

— сопротивление нагрузки детектора.

Второе условие хорошей работы детектора:

На рисунке 3.9 приведены структурная схема и временные диа-граммы выходного напряжения детектора амплитудного значения с параллельным включением диода и закрытым входом. Детектор с за-крытым входом имеет последовательно включенный конденсатор, не пропускающий постоянную составляющую. Рассмотрим работу та-кого детектора при подаче на его вход синусоидального напряжения .

Рис. 3.9. Структурная схема детектора амплитудного значении параллельным включением диода и закрытым входом (а) и временные диаграммы напряжении (б) При поступлении положительной полуволны синусоиды конденса-тор С заряжается через диод VD, который в открытом состоянии имеет малое сопротивление .

Постоянная времени заряда конден-сатора мала, и конденсатор быстро заряжается до макси-мального значения . При смене полярности входного сигнала диод закрыт и конденсатор медленно разряжается через сопротивление на-грузки , которое выбирается большим — 50-100 МОм.

Таким обра-зом, постоянная разряда оказывается значительно больше периода синусоидального сигнала . В результате конденсатор остается заряженным до напряжения, близкого к .

Изменение напряжения на нагрузочном резисторе определяется разностью амплитуд входного напряжения и напряжения на кон-денсаторе .В результате выходное напряжение бу-дет пульсирующим с удвоенной амплитудой измеряемого напряжения (см. рис. 3.9, б).

Это подтверждается следующими математическими выкладками:

при , , при , при .

Для выделения постоянной составляющей сигнала вы-ход детектора подключен к емкостному фильтру, подавляющему всё остальные гармоники тока.

На основании изложенного следует вывод: чем меньше период ис-следуемого сигнала (чем больше его частота), тем точнее выполняется равенство , что объясняет высокочастотные свойства детектора. При использовании в работе вольтметров с детектором амплитудного значения следует иметь в виду, что эти приборы чаще всего градуиру-ются в среднеквадратичных значениях синусоидального сигнала, т.e показания индикатора прибора равны частному от деления амплитудного значения на коэффициент амплитуды синусоиды:

где — коэффициент амплитуды.

Детектор среднеквадратичного значения (рис. 3.10) преобразу-ет напряжение переменного тока в напряжение постоянного тока, про-порциональное квадрату среднеквадратичного значения измеряемого напряжения. Следовательно, измерение среднеквадратичного напряжения связано с выполнением трех операций: возведения в квадрат мгновенного значения сигнала, усреднения его значения и извлечение корня из результата усреднения (последняя операция обеспечивается градуировкой шкалы вольтметра). Возведение в квадрат мгновенного значения сигнала обычно осуществляется диодной ячейкой путем использования квадратичного участка его характеристики.

Рис. 3.10. Детектор среднеквадратичного значения: а — диодная ячейка; б — ВАХ диода

В диодной ячейке VD, R1 (см. рис. 3.10, а) постоянное напряжение приложено к диоду VD таким образом, что он оказывается закры-тым до тех пор, пока измеряемое напряжение () на резисторе R2 не превысит значение .

Начальный участок вольтамперной характеристики диода имеет малую протяженность (см. рис. 3.10, б), поэтому квадратичную часть искусственно удлиняют методом кусочно-линейной аппроксимации путем использования нескольких диодных ячеек.

При конструировании вольтметров среднеквадратичного значения возникают трудности с обеспечением широкого частотного диапазона. Несмотря на это такие вольтметры являются самыми востребованны-ми, так как ими можно измерять напряжение любой сложной формы.

Детектор средневыпрямленного значения преобразует напряжение переменного тока в напряжение постоянного тока, пропорциональное средневыпрямленному значению напряжения. Выходной ток измери-тельного прибора с таким детектором аналогичен выходному току вы-прямительной системы.

Напряжения переменного тока, действующие в электронных устройствах, могут изменяться во времени по различным законам. На-пример, напряжение на выходе задающего генератора связного радио-передатчика изменяется по синусоидальному закону, на выходе генера-тора развертки осциллографа импульсы имеют пилообразную форму, синхроимпульсы полного телевизионного сигнала прямоугольные.

На практике приходится проводить измерения в различных участ-ках схем, напряжения в которых могут отличаться по значению и по форме. Измерение напряжения несинусоидальной формы имеет свои особенности, которые необходимо учитывать, чтобы не допустить оши-бок.

Очень важно правильно выбрать тип прибора и способ пересчета показаний вольтметра в значение необходимого параметра измеряемо-го напряжения. Для этого необходимо четко представлять себе, каким образом производится оценка и сравнение напряжений переменного тока и как влияет форма напряжения на значения коэффициентов, свя-зывающих между собой отдельные параметры напряжения.

Критерием оценки напряжения переменного тока любой формы служит связь с соответствующим напряжением постоянного тока по одинаковому эффекту теплового действия (среднеквадратичное зна-чение U ), определяемое выражением

где — период повторения сигнала;

— функция, описывающая закон изменения мгновенного значения на-пряжения. Далеко не всегда в распоряжении оператора может оказаться вольт-метр, с помощью которого можно измерить нужный параметр напряжения. В таком случае необходимый параметр напряжения измеряется косвенно с помощью имеющегося вольтметра, с использованием коэффициентов амплитуды и формы . Рассмотрим пример расчета необходимых параметров напряжения синусоидальной формы.

Необходимо определить амплитудное () и средневыпрямленное () значения напряжения синусоидальной формы вольтметром, градуированным в среднеквадратичных значениях напряжения синусоидальной формы, если прибор показал .

Расчет выполняем следующим образом. Так как вольтметр градуирован в среднеквадратичных значениях , то в приложении 3 для дан-ного прибора показание 10 В соответствует прямому отсчету по шкале среднеквадратичного значения, т.е.

Переменное напряжение характеризуется средним, амплитудным) (максимальным) и среднеквадратичным значениями.

Среднее значение (постоянная составляющая) за период переменного напряжения:

Максимальное значение — это наибольшее мгновенное значение переменного напряжения за период сигнала:

Средневыпрямленное значение — это среднее напряжение на вы-ходе двухполупериодного выпрямителя, имеющего на входе перемен-ное напряжение :

Соотношение среднеквадратичного, среднего и максимального зна-чений напряжения переменного тока зависит от его формы и в общем виде определяются двумя коэффициентами:

(коэффициент амплитуды), (3.18)

(коэффициент формы). (3.19)

Значения этих коэффициентов для напряжений разной формы иих соотношения приведены в табл. 3.1

Таблица 3.1

Значения и для напряжений разной формы

Примечание , - скважность: .

В ряде приборов напряжение оценивают не в абсолютных единицах измерения (В, мВ, мкВ), а в относительной логарифмической единице — децибеле (dB, или дБ). Для упрощения перехода абсолютных единиц в относительную и, наоборот, большинство аналоговых вольте метров (автономных и встроенных в другие приборы: генераторы, мультиметры, измерители нелинейных искажений) наряду с обычной шкалой имеют децибельную. Эта шкала отличается четко выраженной нелинейностью, что при необходимости позволяет получать результат сразу в децибелах, без соответствующих расчетов и применения таблиц перевода. Чаще всего у таких приборов нуль шкалы децибел соответствует входному напряжению 0,775 В.

Напряжение больше условного нулевого уровня характеризуется положительными децибелами, меньше этого уровня — отрицательными. На переключателе пределов каждый поддиапазон измерения отличается по уровню от соседнего на 10 дБ, что соответствует кратности по напряжению 3,16. Показания, снятые по шкале децибел, алгебраически складываются с показаниями на переключателе пределов измерения, а не перемножаются, как в случае абсолютного отсчета напряжений.

Например, переключатель пределов установлен на «- 10 dB», при этом стрелка индикатора установилась на отметку «- 0,5 dB». Суммар-ный уровень составит: ---- 10 + (- 0,5) = - 10,5 dB, И основу перевода напряжения из абсолютных значений в относительные положена формула

Где = 0,775В.

Поскольку бел — большая единица, то на практике применяют дольную (десятую) часть бела — децибел.

Импульсные и цифровые вольтметры. При измерении импульсных напряжений с малой амплитудой применяют предварительное усиление импульсов. Структурная схема аналогового импульсного вольтметра (рис. 3.11) состоит из выносного пробника с эмиттерным повторителем, аттенюатора, широкополосного предварительного усилителя, детектора амплитудного значения, усилителя постоянного тока (УПТ) и электромеханического индикатора. Вольтметры, реа-лизованные по этой схеме, непосредственно измеряют напряжения 1 мВ - 3 В с погрешностью ± (4 — 10)%, длительностью импульсов 1 - 200 мкс и скважностью 100 ... 2500.

Рис. 3.11.т Структурная схема импульсного вольтметра

Для измерения малых напряжений в широком диапазоне длитель-ностей (от наносекунд до миллисекунд) применяют вольтметры, рабо-тающие на основе автокомпенсационного метода.

Электронные цифровые вольтметры имеют существенные преиму-щества перед аналоговыми:

Высокая скорость измерений;

Исключение возможности возникновения субъективной ошибки оператора;

Малая приведенная погрешность.

Благодаря этим преимуществам цифровые электронные вольтмет-ры широко используются для измерения. На рисунке 3.12 приведена упрощенная структурная схема цифрового вольтметра.

Рис. 3.12. Упрощенная структурная схема цифрового вольтметра

Входное устройство предназначено для создания большого вход-ного сопротивления, выбора пределов измерения, ослабления помех, автоматического определения полярности измеряемого напряжения постоянного тока. В вольтметрах переменного тока входное устрой-ство включает в себя также преобразователь напряжения перемен-ного тока в постоянный.

С выхода входного устройства измеряемое напряжение подается на аналого-цифровой преобразователь (АЦП), в котором напряжение преобразуется в цифровой (дискретный) сигнал в виде электрического кода или импульсов, количество которых про-порционально измеряемому напряжению. Результат появляется на табло цифрового индикатора. Работой всех блоков управляет устрой-ство управления.

Цифровые вольтметры в зависимости от типа АЦП подразделяют-ся на четыре группы: кодоимпульсные, времяимпульсные, частотно-импульсные, пространственного кодирования.

В настоящее время широко применяются цифровые времяимпульсные вольтметры , преобразователи которых выполняют промежуточное преобразование измеряемого напряжения в пропорцио-нальный интервал времени, заполняемый импульсами с известной частотой повторения. В результате такого преобразования дискретный сигнал измерительной информации на входе АЦП имеет вид пачки счетных импульсов, количество которых пропорционально измеряе-мому напряжению.

Погрешность времяимпульсных вольтметров определяется погрешностью дискретизации измеряемого сигнала, нестабильностью частоты счетных импульсов, наличием порога чувствительности схемы сравнения, нелинейностью преобразованного напряжения на входе схемы сравнения.

Различают несколько вариантов схемотехнических решений при построении времяимпульсных вольтметров. Рассмотрим принцип работы время импульсного вольтметра с генератором линейно изменяющегося напряжения (ГЛИН).

На рисунке 3.13 представлены структурная схема цифрового времяимпульсного вольтметра с ГЛИН и временные диаграммы, поясняющие его работу.

Дискретный сигнал измерительной информации па выходе преоб-разователя имеет вид пачки счетных импульсов, количество которых пропорционально значению входного напряжения . С выхода ГЛИН на входы 1 устройств сравнения поступает линейно нарастающее во времени напряжение . Вход 2 устройства сравнения II соединен с корпусом.

В момент равенства на входе устройства сравнения II и на его выходе возникает импульс, который подается на единичный вход триггера (Т), вызывая появление сигнала на его выходе. Триггер возвращается в исходное положение импульсом, поступающим с выхода устройства сравнения II. Этот сигнал появляется в момент равенства линейно нарастающего напряжения и измеряемого . Сформированный таким образом сигнал длительностью (где коэффициент преобразования) подается на вход 1 схемы логиче-ского умножения И, а на вход 2 поступает сигнал с генератора счетных импульсов (ГСИ). Импульсы следуют с частотой . Импульсный сигнал появляется тогда, когда на обоих входах есть импульсы, т.е. счетные импульсы проходят при наличии сигнала на выходе триггера.

Рис. 3.13. Структурная схема (а) ивременное диаграммы (б) цифрового времяимпульсного вольтметра с ГЛИН

Счетчик импульсов подсчитывает количество прошедших импуль-сов (с учетом коэффициента преобразования). Результат измерения отображается на табло цифрового индикатора (ЦИ). Приве-денная формула не учитывает погрешность дискретности из-за несовпа-дения появления счетных импульсов с началом и концом интервала

Кроме того, большую погрешность вносит фактор нелинейности коэффициента преобразования . В результате цифровые время импульсные вольтметры с ГЛИН являются наименее точными среди цифровых вольтметров.

Цифровые вольтметры с двойным интегрированием отличаются от времяимпульсных вольтметров принципом работ Ы. В них в тече-ние времени цикла измерения формируются два временных интервала — и . В первом интервале обеспечивается интегрирование измеряемого напряжения , во втором — опорного напряжения. Вре-мя цикла измерения предварительно устанавливают кратным периоду действующей на входе помехи, что приводит к улучшению помехоустойчивости вольтметра.

На рисунке 3.14 приведены структурная схема цифрового вольтме-тра с двойным интегрированием и временные диаграммы, поясняющие его работу.

Рис. 3.14. Структурная схема (а) и временные диаграммы (6) цифрового вольтметра с двойным интегрированием

При (в момент начала измерения) управляющее устройство вырабатывает калиброванный импульс с длительностью

, (3.21) переводит ключ в положение 2 и от источника образцового напряжения (ИОН) в интегратор подает-ся образцовое отрицательное напряжение становится равным нулю, устройство сравнения выдает сигнал, по-ступающий на триггер, и возвращает последний в исходное состояние. На выходе триггера сформированный импульс напряжения

; ; (3.25)

Из полученных соотношений следует, что погрешность результата измерения зависит только от уровня образцового напряжения, а не от нескольких параметров (как в кодоимпульсном вольт метре), но здесь также имеет место погрешность дискретности.

Преимуществами вольтметра с двойным интегрированием являются высокая помехозащищенность и более высокий класс точ-ности (0,005-0,02%) по сравнению с вольтметрами с ГЛИН.

Цифровые вольтметры со встроенным микропроцессором являются комбинированными и относятся к вольтметрам наивысшего класса точности. Принцип их работы основан на методах поразрядного уравновешивания и времяимпульсного интегрирующего преобразования.

Микропроцессор и дополнительные преобразователи, включенные в схему такого вольтметра, расширяют возможности при-бора, делая его универсальным в части измерения большого числа параметров. Такие вольтметры измеряют напряжение постоянного и переменного тока, силу тока, сопротивление резисторов, часто-ту колебаний и другие параметры. При использовании совместное с осциллографом могут измерять временные параметры: период, длительность импульсов и т.д. Наличие в схеме вольтметра микропроцессора позволяет осуществлять автоматическую коррекциям погрешности измерений, диагностику отказов, автоматическую калибровку.

На рисунке 3.15 приведена структурная схема цифрового вольтметра со встроенным микропроцессором.

Рис. 3.15. Структурная схема цифрового вольтметра со встроенным микропроцессором

С помощью соответствующих преобразователей блок нормали-зации сигналов приводит входные измеряемые параметры (97 стр) к унифицированному сигналу , поступающему на вход АЦП, ко-торый выполняет преобразование методом двойного интегрирования. Выбор режима работы вольтметра для заданного вида измерений осу-ществляет блок управления АЦП с дисплеем. Этот же блок обеспечи-вает нужную конфигурацию системы измерения.

Микропроцессор является основой блока управления и связан с другими блоками через сдвигающие регистры. С помощью клавиа-туры, находящейся на панели управления, обеспечивается управление микропроцессором. Управление может осуществляться также и через стандартный интерфейс подключаемого канала связи. В постоянном запоминающем устройстве (ПЗУ) хранится программа работы микро-процессора, которая реализуется с помощью оперативного запомина-ющего устройства (ОЗУ).

Встроенные высокостабильные и точные резистивные делители опорного напряжения, дифференциальный усилитель (ДУ) и ряд внеш-них элементов (аттенюатор, устройство выбора режима, блок опорного напряжения ) выполняют непосредственно измерения. Все блоки синхронизируются сигналами от генератора тактовых импульсов.

Включение в схему вольтметра микропроцессора и ряда дополнительных преобразователей позволяет выполнять автоматическую коррекцию погрешностей, автоматическую калибровку и диагностику отказов.

Основными параметрами цифровых вольтметров являются точность преобразования, время преобразования, пределы изменения входной величины, чувствительность.

Точность преобразования определяется погрешностью квантова-ния по уровню, характеризуемой числом разрядов в выходном коде.

Погрешность цифрового вольтметра имеет две составляющие. Пер-вая составляющая (мультипликативная) зависит от измеряемой вели-чины, вторая составляющая (аддитивная) не зависит от измеряемой величины.

Такое представление связано с дискретным принципом измерения аналоговой величины, так как в процессе квантования возникает абсо-лютная погрешность, обусловленная конечным числом уровней квантования. Абсолютная погрешность измерения напряжения выражается как

знаков) или ( знаков), (3.27)

где — действительная относительная погрешность измерения;

— значение измеряемого напряжения;

конечное значение на выбранном пределе измерения;

т знаков — значение, определяемое единицей младшего разряда ЦИ (аддитивная погрешность дискретности). Основную действительную относительную погрешность измере-ния можно представить и в другом виде:

Где a, b — постоянные числа, характеризующие класс точности прибора.

Первое слагаемое погрешности (а) не зависит от показаний при-бора, а второе (b) увеличивается при уменьшении .

Время преобразования — это время, затрачиваемое на выполнение одного преобразования аналоговой величины в цифровой код.

Пределы изменения входной величины это диапазоны преобразования входной величины, которые полностью определяются числом разрядов и «весом» наименьшего разряда.

Чувствительность (разрешающая способность) — это наименьшее различимое преобразователем изменение значения входной величины.

К основным метрологическим характеристикам вольтметров, которые необходимо знать для правильного выбора прибора, относятся следующие характеристики:

Параметр измеряемого напряжения (среднеквадратичное, ампли-тудное);

Диапазон измерения напряжения;

Частотный диапазон;

Допустимая погрешность измерений;

Входной импеданс ().

Эти характеристики приводятся в техническом описании и паспор-те прибора.

Вольтметр – это измерительный прибор, который предназначен для измерения напряжения постоянного или переменного тока в электрических цепях.

Вольтметр подключается параллельно к выводам источника напряжения с помощью выносных щупов. По способу отображения результатов измерений вольтметры бывают стрелочные и цифровые.

Величина напряжения измеряется в Вольтах , обозначается на приборах буквой В (в русском языке) или латинской буквой V (международное обозначение).

На электрических схемах вольтметр обозначается латинской буквой V, обведенной окружностью, как показано на фотографии.

Напряжение тока бывает постоянное и переменное. Если напряжение источника тока переменное, то перед значением ставится знак "~ ", если постоянного, то знак "".

Например, переменное напряжение бытовой сети 220 Вольт кратко обозначается так: ~220 В или ~220 V . На батарейках и аккумуляторах при их маркировке знак "" часто опускается, просто нанесено число. Напряжение бортовой сети автомобиля или аккумулятора обозначается так: 12 В или 12 V , а батарейки для фонарика или фотоаппарата: 1,5 В или 1,5 V . На корпусе в обязательном порядке наносится маркировка возле положительного вывода в виде знака "+ ".

Полярность переменного напряжения изменяется во времени. Например, напряжение в бытовой электропроводке изменяет полярность 50 раз в секунду (частота изменения измеряется в Герцах, один Герц равен одному изменению полярности напряжения в одну секунду).

Полярность постоянного напряжения во времени не меняется. Поэтому для измерения напряжения переменного и постоянного тока требуются разные измерительные приборы.

Существуют универсальные вольтметры, с помощью которых можно измерять как переменное, так и постоянное напряжение без переключения режимов работы, например, вольтметр типа Э533.

Как измерять напряжение в электропроводке бытовой сети

Внимание! При измерении напряжения величиной выше 36 В недопустимо прикосновение к оголенным провода,так как это может привести к поражению электрическим током!

Согласно требованиям ГОСТ 13109-97 действующее значение напряжения в электрической сети должно быть 220 В ±10% , то есть может изменяться в пределах от 198 В до 242 В . Если в квартире стали тускло гореть лампочки или часто перегорать, стала нестабильно работать бытовая техника, то для принятия мер, требуется сначала измерять значение напряжения в электропроводке.

Приступая к измерениям, необходимо подготовить прибор: – проверить надежность изоляции проводников с наконечниками и щупов; – установить переключатель пределов измерений в положение измерения переменного напряжения не менее 250 В;

– вставить разъемы проводников в гнезда прибора ориентируясь по надписям возле них;


– включить измерительный прибор (если необходимо).

Как видно на картинке, в тестере выбран предел измерения переменного напряжения 300 В, а в мультиметре 700 В. Во многих моделях тестеров, нужно установить в требуемое положение сразу несколько переключателей. Род тока (~ или –), вид измерений (В, А или Омы) и еще вставить концы щупов в нужные гнезда.

В мультиметре конец щупа черного цвета вставлен в гнездо COM (общее для всех измерений), а красного в V, общий для изменения постоянного и переменного напряжения, тока, сопротивления и частоты. Гнездо, обозначенное ma , используются для измерения малых токов, 10 А при измерении тока достигающего 10 А.

Внимание! Измерение напряжения, когда штекер вставлен в гнездо 10 А выведет прибор из строя. В лучшем случае перегорит вставленный внутри прибора предохранитель, в худшем придется покупать новый мультиметр. Особенно часто допускают ошибки при использовании приборов для измерения сопротивления, и, забыв переключить режим, измеряют напряжение. Встречал не один десяток таких неисправных приборов, с горелыми резисторами внутри.

После проведения всех подготовительных работ можно приступать к измерению. Если Вы включили мультиметр, а на индикаторе не появились цифры, значит, либо в прибор не установлена батарейка или она уже выработала свой ресурс. Обычно в мультиметрах применяется батарейка типа «Крона», напряжением 9 В, срок годности которой один год. Поэтому, даже если прибор не использовался долгое время, батарейка может быть неработоспособна. При эксплуатации мультиметра в стационарных условиях целесообразно вместо кроны использовать адаптер ~220 В/–9 В.

Вставляете концы щупов в розетку или прикасаетесь ними к проводам электропроводки.


Мультиметр сразу покажет напряжение в сети, а вот в стрелочном тестере показания надо еще уметь прочитать. На первый взгляд, кажется, что сложно, так как много шкал. Но если присмотреться, то становится ясно, по какой шкале считывать показания прибора. На рассматриваемом приборе типа ТЛ-4 (который безотказно мне служит более 40 лет!) есть 5 шкал.

Верхняя шкала используется для снятия показаний, когда переключатель стоит в положениях кратных 1 (0,1, 1, 10, 100, 1000). Шкала, расположенная чуть ниже, кратных 3 (0,3, 3, 30, 300). При измерениях напряжения переменного тока величиной 1 В и 3 В, нанесены еще 2 дополнительные шкалы. Для измерения сопротивления имеется отдельная шкала. Аналогичную градуировку имеют все тестеры, но кратность может быть любая.

Так как предел измерений был выставлен ~300 В, значит, отсчет нужно производить по второй шкале с пределом 3, умножив показания на 100. Цена маленького деления равна 0,1, следовательно, получается 2,3 + стрелка стоит посередине между штрихами, значит, берем значение показаний 2,35×100=235 В.

Получилось, что измеренное значение напряжения составляет 235 В, что в пределах допустимого. Если в процессе измерений наблюдается постоянное изменение значения цифр младшего разряда, а у тестера стрелка постоянно колеблется, значит, имеются плохие контакты в соединениях электропроводки и необходимо провести ее ревизию.

Как измерять напряжение батарейки
аккумулятора или блока питания

Так как напряжение источников постоянного тока обычно не превышает 24 В, то прикосновение к клеммам и оголенным проводам не опасно для человека и особых мер безопасности соблюдать не требуется.

Для того, чтобы оценить годность батарейки, аккумулятора или исправность блока питания требуется измерять напряжение на их выводах. Выводы у круглых батареек находятся по торцам цилиндрического корпуса, положительный вывод обозначен знаком «+».

Измерение напряжения постоянного тока практически мало чем отличается от измерения переменного. Нужно просто переключить прибор в соответствующий режим измерения и соблюдать полярность подключения.

Величина напряжения, которое создает батарейка обычно нанесена на ее корпусе. Но даже если результат измерений показал достаточное напряжение, это еще не говорит о том, что батарейка хорошая, так как измерена ЭДС (электро движущая сила), а не емкость батарейки, от которой зависит продолжительность работы изделия, в которое она будет установлена.

Для более точной оценки емкости батарейки нужно напряжение измерять, подсоединив к ее полюсам нагрузку. В качестве нагрузки для батарейки 1,5 В хорошо подходит лампочка накаливания для фонарика, рассчитанная на напряжение 1,5 В. Для удобства работы нужно припаять к ее цоколю проводники.

Если напряжение под нагрузкой снижается менее, чем на 15%, то батарейка или аккумулятор вполне пригодны для эксплуатации. Если нет измерительного прибора, то можно судить о годности к дальнейшей эксплуатации батарейки по яркости свечения лампочки. Но такая проверка не может гарантировать продолжительность работы батарейки в устройстве. Она лишь свидетельствует, что в настоящее время батарейка еще пригодна к эксплуатации.

Ток, проходящий в проводнике, имеет определённую электродвижущую силу. Когда возникает необходимость определить её значение на отдельно выбранном участке цепи, используют измеритель напряжения. Единицей измерения принято считать вольт, а прибор получил название вольтметр. Этот аппарат широко применяется в промышленности, научных исследованиях и повседневном быте человека.

Классификация и принцип действия

Чтобы лучше понять, каким прибором измеряется напряжение и почему он так называется, стоит обратиться к физике. По определению - это сила, которая действует на электроны и заставляет их перемещаться в одном или в разных направлениях. Единица измерения - вольт.

Вольтметры используются людьми в различных сферах деятельности. Существует множество разновидностей и модификаций этого устройства. В зависимости от конструктивных особенностей и области применения, приборы для измерения электрического напряжения классифицируются по трём основным параметрам:

  1. Принцип действия. Электромеханические и электронные.
  2. Назначение. Постоянного и переменного тока, импульсные и фазочувствительные, а также селективные и универсальные.
  3. Конструкция и применение. Стационарные, переносные и щитовые.

Принцип действия электромеханических вольтметров основывается на изменении магнитного поля. Ток проходит через обмотку, что приводит к возникновению электромагнитного поля. В результате этого стрелка, насаженная на ось с постоянным магнитом, отклоняется и показывает значение электродвижущей силы (ЭДС).

Электронные приборы также могут иметь стрелку. В корпусе находится преобразователь переменного тока в постоянный, а отклонение указателя происходит под действием детектора напряжения.

Цифровые измерители отображают информацию на жидкокристаллическом дисплее. Их работа основана на микросхеме и преобразователе сигнала.

Виды измерителей напряжения

Вольтметр для измерения напряжения в цепи постоянного тока имеет маркировку В2. Применяется в качестве тестера для проводки и электроприборов.

Если приходится иметь дело с переменным током, прибор маркируется В3. Он имеет компактный преобразователь для выпрямления и усилитель сигнала.

Импульсный (В4) разработан для измерения помех в электросети. Позволяет найти в цепи место со слабым контактом.

Фазовый (В5) определяет квадратурные составляющие первой гармоники. В быту не применяется из-за своей невостребованности.

Селективный (В6) отличается большими габаритами и напоминает радиоприёмник. Он может различать частоту сигнала.

Универсальный вольтметр (В7) - прибор для измерения напряжения в электросетях любого типа.

Переносные модели (тестер, мультиметр) - это небольшие автономные устройства, оснащённые электродами.

Стационарные вольтметры - это большие и тяжёлые приборы, часто встроенные в оборудование. Используются на производстве для контролирования работы электросистемы.

Щитовые аппараты более простые. Их интегрируют в бытовые электроприборы , а также используют на транспортных средствах в качестве датчиков.

Подключение и технические характеристики

Для проведения адекватного измерения вольтметр должен быть включён в необходимый участок цепи посредством последовательного соединения. Подключение переносных измерителей производится с помощью электродов или специальных прищепок. При снятии показаний от источника питания электроды подсоединяют прямо к клемам.

Перед подключением стоит определить:

  • порядок величины напряжения;
  • полярность;
  • характер и тип тока;
  • режим измерения (на универсальном вольтметре).

Прежде чем купить или начать использовать вольтметр, нелишним будет оценить его эффективность. Нужно определиться со своими потребностями и выбрать необходимый измеритель напряжения.

Оценка технических показателей проходит по таким параметрам:

Разобравшись с вопросом, каким прибором измеряют напряжение, стоит напомнить о мерах безопасности. Электрический ток может серьёзно травмировать и даже убить человека. Если проводится снятие показаний высокого напряжения, нельзя притрагиваться к проводам оголёнными участками тела. На руки необходимо надеть защитные перчатки.

© 2024 bugulma-lada.ru -- Портал для владельцев автомобилей