Миниатюрные линейные пьезоэлектрические двигатели. Ультразвуковой мотор автофокуса. Ремонт. Рекомендованный список диссертаций

Главная / Ремонт

Введение

1 Мехатронные модули на базе пьезоэлектрических двигателей и их применение

1.1 Пьезоэлектрические двигатели.

1 2 Пьезоэлектрический двигатель как часть мехатронного модуля.

1 3 Методы коррекции параметров мехатронных модулей на базе пьезоэлектрических двигателей

1 3 1 Одномерные способы управления

132 Амплитудно-частотный метод управления.

1 3 3 Амплитудно-фазовый метод управления.

1 4 Функционально-структурная интеграция.

1 5 Структурно-конструктивная интеграция.

1 6 Применение мехатронных модулей на базе пьезоэлектрических двигателей

1 7 Выводы.

2 Разработка математической модели пьезоэлектрического двигателя ударного типа

2 1 Исследование конструкции пьезоэлектрического двигателя

2 2 Исследование статических и динамических характеристик пьезоэлектрического двигателя.

2 3 Расчетная схема пьезоэлектрического двигателя.

2 4 Синтез модели механического преобразователя двигателя.

2 4.1 Модель толкателя механического преобразователя.

2 4 2 Модель взаимодействия толкателя и ротора пьезоэлектрического двигателя

2 4.3 Учет влияния зоны нечувствительности регулировочной характеристики

2 4 4 Построение модели пьезоэлемента.

2 4.5 Учет влияния реакции ротора.

2 5 Выводы.

3 Синтез регулятора с адаптивной структурой, выполняющего линеаризацию характеристик двигателя.

3 1 Концепция адаптации частоты управления.

33 2 Исследование влияния контуров адаптации на качество работы мехатрониого модуля на базе пьезоэлектрического двигателя.

3.2.1 Настройка параметров фазового контура управления.

3 2.2 Настройка контура управления по току.

3 3 Анализ переходного процесса мехатрониого модуля при использовании корректирующего устройства с адаптивной структурой.

3 4 Сравнительный анализ характеристик методов управления.

3 4.1 Выбор и обоснование критерия оценки качества управления.

3 4 2 Результаты сравнительного анализа.

3 4 3 Преимущества использования корректирующего устройства с адаптивной структурой

3 5 Упрощение модели мехатрониого модуля на базе пьезоэлектрического двигателя

3 6 Выводы

4 Экспериментальные исследования опытного образца мехатрониого модуля.

4 1 Реализация импульсного усилителя мощности.

4 2 Реализация датчика фазы.

4 3 Универсальный вычислитель.

4 4 Проверка адекватности уточненной модели.

4 5 Методика проектирования мехатрониого модуля на базе пьезоэлектрического двигателя ударного типа.

4 6 Выводы.

5 Повышение эффективности использования мехатронных модулей в составе исследовательских системах.

5 1 Архитектура исследовательского комплекса.

5 2 Организация доступа к лабораторному оборудованию.

5 3 Проектирование лабораторной службы на базе унифицированного менеджера ресурсов исследовательского оборудования.

5 4 Методика проектирования распределенного лабораторного комплекса

5 5 Примеры реализованных проектов.

5 5 1 Лабораторный стенд для исследования динамических процессов привода на базе двигателя постоянного тока.

5 5.2 Лабораторный стенд для исследования пьезоэлектрического двигателя

5 6 Выводы.

Рекомендованный список диссертаций

  • Пьезоэлектрический двигатель вращения - как элемент автоматических систем 1998 год, кандидат технических наук Коваленко, Валерий Анатольевич

  • Основы теории и проектирования мехатронных систем микроперемещений с пьезоэлектрическими приводами 2004 год, доктор технических наук Смирнов, Аркадий Борисович

  • Повышение точности и быстродействия промышленных мехатронных электропневматических следящих приводов на основе аппаратной и программной интеграции мехатронных компонентов 2010 год, кандидат технических наук Харченко, Александр Николаевич

  • Автоматизированный синтез цифровых алгоритмов импульсного управления исполнительным механизмом привода с трёхфазным вентильным двигателем 2012 год, кандидат технических наук Гагарин, Сергей Алексеевич

  • Разработка и исследование мехатронного пьезоэлектрического схвата с микропозиционированием и очувствлением 2008 год, кандидат технических наук Крушинский, Илья Александрович

Введение диссертации (часть автореферата) на тему «Улучшение динамических характеристик мехатронных модулей с пьезоэлектрическими двигателями ударного типа на основе адаптивных методов управления»

В настоящее время развитие микро и нанотехнологий, востребованных микроэлектроникой, приборостроением и космической техникой, выдвинуло новые требования по точности и динамике к исполнительным устройствам ,. А развитие мобильной робототехники ужесточило требования к массогабаритным показателям исполнительных устройств

Точность позиционирования традиционных электромагнитных систем (ЭМС) не всегда удовлетворяет современным требованиям . Основным источником погрешности позиционирования в таких системах является редукторы, которые используются для преобразования скоростей вращения и моментов на валу двигателя. Кроме того, редукторы, тормозные муфты, входящие в состав ЭМС, увеличивают массогабаритные показатели испо шительных систем.

Одним из возможных путей повышения точности при одновременном улучшении жергетических характеристик следящих приводов и снижения их стоимости является испо 1ьзование пьезоэлектрических двигателей ,,,.

Этот тип двигателей считается перспективным средством решения множества задач в космической автоматике , мобильной технике , в робототехнике ,.

Однако, несмотря на преимущества двигателя, к которым в первую очередь относятся низкая скорость вращения с высоким моментом на валу и малые массогабаритные показатели, он имеет существенно нелинейные характеристики, которые меняются по мере износа, что затрудняет его использование в следящих автоматических системах ,

К настоящему времени разработан ряд методов, позволяющих снизить нелинейность характеристик двигателя путем введения внутренних контуров стабилизации параметров питающего напряжения, таких как частота и амплитуда , , К ним относятся амплитудно-частотный, амплитудно-фазовый методы. Коррекция управляющего воздействия в этих методах выполняется путем пропорционального расчета резонансной частоты по информации одной из косвенных обратных связей: скорости вращения; тока, протекающего по пьезоэлементу; фазовому рассогласованию между током и напряжением Использование данных методов коррекции параметров ПЭД позволяют линеаризовать его характеристики, однако каждому из методов присущи определенные недостатки: увеличение времени переходного процесса, снижение максимальной скорости вращения, не-потпая управляемость во время переходного процесса.

Анализ описанных методов показал, что их основным недостатком является использование линейных регуляторов во внутреннем контуре подстройки. Для улучшения динамических характеристик ПЭД при использовании линейных регуляторов необходимо \ ве шчивать коэффициент усиления. Однако вследствие нелинейной зависимости резонансной частоты от косвенных обратных связей это приводит к потере устойчивости системы Поэтому динамические возможности двигателя используются не полностью, что негативно отражается на точности и быстродействии следящих систем, построенных на базе пьеюэлектрических двигателей с использованием описанных методов

Повысить динамические и линеаризовать статические характеристики приводов на базе пьезодвигателя можно за счет применение адаптивных алгоритмов управления. Это позволит использовать линейную теорию управления при синтезе приводов на базе ПЭД.

Современный уровень развития вычислительной техники позволяет реализовать необходимые алгоритмы адаптации в виде встроенных систем управления В свою очередь, миниатюризация системы управления даст возможность разработать мехатронный мод\ ib па базе данного двигателя с малыми габаритами.

Для синтеза метода управления требуется модель, адекватно описывающая поведение двигателя. Большинство моделей ПЭД, представленных в работах Бансевичус Р. Ю., Раг\льскис К М, построены эмпирическим путем. Их применение для широкого круга различных конструкций ПЭД на практике затруднено. Кроме того, в данных моделях практически не учитываются факторы, влияющие на изменение одного из основных параметров - резонансной частоты А, как показали исследования, инвариантность системы к этом\ параметру может существенно повысить КПД привода и его динамические показатели Аналитические модели, построенные на эквивалентных схемах замещения, представленные в работах Коваленко В. А., недостаточно полно учитывают реактивное влияние нагрузки на параметры и поведение пьезоэлемента. Учет влияния этих факторов позволит выполнить синтез привода на базе ПЭД с более высокими точностными и энергетическими характеристиками

Для массового применения данного двигателя в системах автоматического регулирования необходима методика синтеза мехатронного модуля с линейными характеристиками

Научная новизна работы состоит:

1 в разработке нелинейной модели пьезоэлектрического двигателя ударного типа, в которой учтено влияние внешнего возмущающего момента;

2 в разработке эффективных средств коррекции параметров пьезоэлектрических двигателей ударного типа на основе адаптивной многоконтурной структуры цифровой системы управления;

3 в разработке и научном обосновании методики проектирования мехатронных модулей на базе пьезоэлектрических двигателей ударного типа;

4 в разработке средств проектирования и реализации лабораторно-исследовательских систем, предназначенных для использования дорогостоящего лабораторного оборудования в режиме разделения времени, на примере стенда для изучения свойств мехатронных модулей на базе пьезоэлектрических двигателей.

Методы исследования

Синтез структуры математической модели проведен в соответствии с классической механикои, с использованием численных методов решения систем дифференциальных уравнений

При разработке и исследовании корректирующего устройства применялись следующие методы теории автоматического управления: метод поиска экстремума однопа-раметрического объекта, метод гармонической линеаризации, метод стохастической аппроксимации

Реализация программно-аппаратного обеспечения выполнена с использованием мечлтронного и объектно-ориентированного подходов

Подтверждение адекватности разработанной модели выполнено с использованием метода натурного эксперимента

Практическая ценность заключается в предоставлении средств проектирования и реализации мехатронных модулей на базе пьезоэлектрических двигателей с высокими динамическими показателями Разработанная в ходе выполнения диссертационной работы модель двигателя и меха-тронного модуля, может использоваться для синтеза следящих приводов, а также исследования принципов работы двигателей и методов управления. Реализация и внедрение результатов работы

Полученные в диссертации научные результаты внедрены: на предприятии ЗАО «СК1Б компьютерных систем» при разработке автоматической системы, что подтверждается соответствующим актом; на кафедре "Робототехника и мехатроника" МГТУ «Стан-кин» в виде лабораторного комплекса, который предназначен для использования в учебном процессе, для проведения исследовательских работ студентами и аспирантами. Данная концепция построения лабораторно-исследовательских комплексов может быть рекомендована для проведения лабораторных работ по специальностям. 07.18 «Мехатроника», 21 03 «Робототехника и робототехнические системы».

Апробация работы проводилась при обсуждении результатов диссертационной paooibi на

Конференции по математическому моделированию, проводимой в МГТУ «Станкин» 28-29 апреля 2004 г

Публикации

Основные результаты диссертационной работы изложены в 4 печатных работах:

1 Медведев И.В, Тихонов А.О Реализация модульной архитектуры при построении исследовательских лабораторий Мехатроника. - 2002 вып. 3. - С. 42-46.

2 Медведев И В, Тихонов А О. Уточненная модель пьезоэлектрического двигателя для синтеза мехатронного привода Мехатроника, автоматизация, управление. -2004 вып. 6 - С. 32-39.

3 Тихонов А О Математическая модель пьезоэлектрического двигателя. Тез. докл VII-ой научной конференции «Математическое моделирование» - М- МГТУ «Станкин» 2004. - С. 208-211.

4 Тихонов А.О. Адаптивный метод управления пьезоэлектрическими двигателями как средство уменьшения динамической ошибки. Тез. докл. конференции «Мехатроника, автоматизация, управление» - М: 2004. - С. 205-208.

Автор выражает глубокую благодарность своему научному руководителю Медведеву Игорю Владимировичу за четкое руководство проведенной научной и практической работы, а также коллективу кафедры «Робототехника и мехатроника» в особенности Поду раеву Юрию Викторовичу и Илюхину Юрию Владимировичу за ценные советы, которые позволили повысить качество данной работы.

Похожие диссертационные работы по специальности «Роботы, мехатроника и робототехнические системы», 05.02.05 шифр ВАК

  • Разработка и исследование алгоритмов управления системой "Импульсный усилитель мощности - асинхронный двухфазный двигатель" 2005 год, кандидат технических наук Фам Туан Тхань

  • Разработка методологических основ создания первичных измерительных преобразователей механических величин при слабых возмущениях на основе прямого пьезоэффекта 2001 год, доктор технических наук Яровиков, Валерий Иванович

  • Исследование и разработка информационно-управляющих средств мехатронной системы с индукторным двигателем 2009 год, кандидат технических наук Салов, Семен Александрович

  • Управление по критерию эффективного использования энергетических ресурсов в мехатронных системах 2001 год, доктор технических наук Малафеев, Сергей Иванович

  • Цифровая система управления мехатронного модуля с трехфазным бесконтактным двигателем постоянного тока 2002 год, кандидат технических наук Кривилев, Александр Владимирович

Заключение диссертации по теме «Роботы, мехатроника и робототехнические системы», Тихонов, Андрей Олегович

1 Решена актуальная научно-техническая задача, заключающаяся в разработке мехатронного модуля на базе пьезоэлектрического двигателя ударного типа.

2 Для построения математической модели пьезоэлектрических двигателей ударного типа необходимо учитывать влияние нагрузки на параметры пьезоэлемента.

3 Разработанная в диссертации модель пьезоэлектрических двигателей ударного типа удобна для синтеза адаптивных контуров стабилизации параметров пьезоэлектрических двигателей.

4 Характеристики ПЭД могут быть улучшены за счет применения адаптивного многоконтурного корректирующего устройства, рассчитывающего частоту напряжения управления на основе двух косвенных обратных связей.

5 Исключения зоны нечувствительности можно добиться путем введения дополнительной нелинейности во внутренний контур управления

6 Использование комплекса предложенных средств позволяет улучшить ряд характеристик двигателя на 10 - 50%, а также учесть изменение параметров двигателя, связанных с износом механического преобразователя.

6 Заключение

В диссертации решен ряд научных задач, связанных с улучшением характеристик мехатронных модулей на базе пьезоэлектрических двигателя ударного типа, что позволяет использовать такие двигатели в быстродействующих высокоточных системах автоматического управления

Основные научные результаты исследований

Выявлено, что собственная частота двигателя нелинейно зависит как от амплитуды управляющего сигнала, так и от момента внешних сил, приложенных к ротору двигателя. Поэтому регулировочные и механические характеристики существенно нелинейны.

Установлено, что величины амплитуды управляющего сигнала и приложенного момента определяют время контакта статора и ротора двигателя. От времени контакта зависят два важных с точки зрения управления параметра двигателя: приведенная масса пьезоэлемента и средняя $а период упругость толкателя, введенная при описании толкателя моделью сжатой пружины Следовательно, резонансная частота, которая зависит от этих параметров, также изменяется

Установлено, что по мере износа элементов механического преобразователя, изменяется диапазон рабочих частот, что также влечет за собой изменение характеристик двигателя.

Выполненные исследования показали возможность линеаризации характеристик двигателя и счет введения внутренних контуров адаптации, которые обеспечивают подстройку параметров сигнала управления к изменяющимся параметрам двигателя.

Анализ разработанных ранее методов линеаризации характеристик двигателя выявил их некоторые недостатки, связанные с увеличением времени переходного процесса, неполным использованием скоростного диапазона. Наличие перечисленных недостатков является следствием использования линейных корректирующих устройств при расчете частоты управления. Это приводит к ухудшению как статических, так и динамических характеристик мехатронного модуля на базе пьезоэлектрического двигателя.

Линеаризация характеристик позволяет использовать линейную теорию управления при синтезе приводов рассматриваемого типа. Реализация предложенных адаптивных алгоритмов возможна на базе встроенных микроконтроллеров.

Повысить эффективность использования дорогостоящего оборудования в учебных целях или лабораторно-исследовательской практике можно за счет использования предложенной методики применения аппаратных и программных средств, обеспечивающих работу лабораторного оборудования в режиме разделения времени.

Список литературы диссертационного исследования кандидат технических наук Тихонов, Андрей Олегович, 2004 год

1. Лавриненко В.В. Пьезоэлектрические двигатели. М.: Энергия, 1980. - 110 с./ В.В. Лаври-ненко, И.А. Карташев, B.C. Вишневский.

2. Бансявичус Р.Ю., Рагульскис К.М. Вибродвигатели. Вильнюс, Маислис, 1981. Код Д5-81/85238. - 193 с.

3. Сигов Л.С., Мальцев П.П. О терминах и перспективах развития микросистемной техники. Труды конф. «Мехатроника, автоматизация, управление». М, 2004. - С. 34-36.

4. Никольский Л.А. Точные двухканальные следящие электроприводы с пьезокомпенсаторами. Москва: Энергоатомиздат, 1988. - 160 с.

5. A novel non-magnetic miniature motor for ultra high vacuum applications. Nanomotion Ltd. January, 2000. 36 c.

6. Kaajari V. Ultrasonical driven surface micromachined motor. Univarsity of Wisconsin Madison IEEE, 2000 - C.56-72. / V. Kaajari, S. Rodgers, A. Lai.

7. Xiaoqi Bao, Yosech Bar-Cohen. Complete modeling of rotary ultrasonic motor actuated by traveling flexural waves. Jet Propulsion Laboratory, Caltech, Pasadena, CA 91109 Newport, CA. Paper No 3992-103 SPrE, 2000. -lie.

8. Das H. Robot manipulator technologies for planetary exploration. etc. Jet Propulsion Laboratory, MS 198-219, California Institute of Technology, Pasadena, CA 91109. - 132 с. / H. Das, X. Bao, Y. Bar-Cohen.

9. Hynn A.M. Piezoelectric micromotors for microrobots. etc. MIT Artificial Intelligence Lab., Cambridge, MA. Ultrasonics Symposium, 1990. IEEE 1990. - C. 125-134 / A.M. Flynn, Tavrow LS BartS.F.

10. Коваленко В.А. Пьезоэлектрический двигатель как объект автоматического регулирования: Диссертация, канд. техн. наук. издат-во МГТУ им. Н.Э. Баумана, 1998 юд. - 171с.1.. Ерофеев А.А. Способы управления и принципы построения ППСУ с ПД // СнГУ, 1993. -Юс

11. Сироткин О.С. Мехатронньте технологические машины в машиностроении. // Мехатроника, автоматизация управление, 2003. № 4. С.33-37 / О.С. Сироткин, Ю.В. Подураев, Ю.П. Богачев.

12. Подураев Ю.В. Основы мехатроники. М: МГТУ «Станкин», 2000. - 78 с.

13. Подураев Ю.В. Анализ и проектирование мехатронных систем на основе критерия функ-цнонально-етруктурной интеграции // Мехатроника, автоматизация, управление, 2002. № 4-С. 28-34.

14. Макаров И.М., Лохин В.М. Интеллектуальные системы автоматического управления. -М: Наука, 2001.-64 с.

15. Гради Буч. Объектно-ориентированный анализ и проектирование. Rational, Санта-Клара, Калифорния, 2001.-452 с.

16. Бъярн Страуструп. Язык программирования С++. М: Бином, 2001. - 1099 с.

17. Перри Синк. Восемь открытых промышленных сетей и Industrial Ethetrnet // Мир компьютерной автоматизации, 2002. № 1. - 23 с.

18. Ueha S., Tomikawa Y. Ultrasonic Motors: Theory and Application. Oxford: Clarendon Press, 1993 - 142 c.

19. Sashida Т., Kenjo T. An Introduction to Ultrasonic Motors. Oxford: Clarendon Press, 1993. -46 c.

20. Бансявичус Р.Ю., Рагульскис К.М. Вибрационные преобразователи движения. М.: Машиностроение, 1984. Код М/43361. - 64 с.

21. Щербин A.M. Исполнительные элементы прецизионных пьезоэлектрических приводов с увеличенным диапазоном перемещения: Автореферат на соискание к. т. н. М., 1997. - 14 с

22. Слога Baum. Piezoelectric motors and their implementations. Nanomotion Ltd, 1998. - 58 c.

23. Dror Perlstein, Nir Karasikov. Reliability analysis of piezoceramic motors in heavy duty applications. Nanomotion Ltd., 2003. -71 c.

24. Александров А.В. Сопротивление материалов: Учебник для вузов. М.: Высшая школа, 1995. - 559с. / А.В. Александров, В.Д. Потапов, Б.П. Державен.

25. Коваленко В.Л., Орлов Г.А. Применение пьезоэлектрических двигателей вращения в автоматических системах. изд. МГТУ им. Н.Э. Баумана, 1998. - 11 с.

26. Коваленко В.А., Орлов Г.А. Пьезоэлектрические двигатели вращения в автоматических системах. Конструкция и характеристики // Проблемы прочности и надежности машин. . МГГУ им. Н.Э. Баумана,1999. №1. с.75-82.

27. IRE standart on piezoelectric crystals: meashurements of piezoelectric ceramics //Proc IRE-1958.V46-p.764.

28. Центров Б.Н. Принципы построения и проектирования самонастраивающихся систем управления. М., 1972. - 260 е./ Пентров Б.Н., Рутковский В.Ю., Крутова И.Н. и др.

29. Фомин В.Н. Адаптивное управление динамическими объектами. М., 1981. - 448 с. / В.Н. Фомин, A.JI. Фрадков, В.А. Якубович.

30. Саридис Дж. Самоорганизующиеся стахостические системы управления». М., 1980. - 400 с

31. Красовский А.А. Универсальные алгоритмы оптимального управления непрерывными процессами. М., 1977. -272 с. / А.А. Красовский, В.Н. Буков, B.C. Шендрик.

32. Растрыгин Л.Л. Системы экстремального управления. М., 1974. - 630 с.

33. Изерман Р. Цифровые системы управления. М., 1984. - 541 с.

34. Кривченко И.Н. Системы на кристалле: общее представление и тенденции развития // Компоненты и технологии. 2001. N6. С 43-56.

35. Осмоловский П.Ф. Итерационные многоканальные системы автоматического регулирования. М: Советское радио, 1969. -235 с.

36. Сиюв Л.С., Мальцев П.П. О терминах и перспективах развития микросистемной техники // Мехатроника, автоматизация, управление. М, 2004. - С. 34-36.

37. Советов Б.А., Яковлев С. А. Моделирование систем. М., Вш. Ш., 1985. -271 с.

38. Белоус П.Л. Осесимметричные задачи теории упругости. Одесса, ОГПУ, 2000. - 183с.

39. I имошенко С.П. Колебания в инженерном деле. Наука, 1967. - 444 с.

40. I имошенко С.П. Сопротивление материалов. Т.1 М.: Наука, 1965.- 364с.

41. Биргер И.А., Пановко Я.Г. Прочность, устойчивость, колебания. Том 1. М., Вш. Ш., 1989. -271 с

42. Александров Л.Г. Оптимальные и адаптивные системы. Вш. ш., 1989. - 244 с

43. Егоров К. В. Основы теории автоматического регулирования. 2е изд. М.: «Энергия», 1967. 648 с.

44. Бесекерский В.Л., Попов Е.П. Теория систем автоматического регулирования. М.: Наука. 1975 -765 с.

45. Б\1ров Я.С., Никольский С.М. Высшая математика. Том 1, 2. Ряды Фурье. М.: Наука, 1981 г.-435 с.

46. Земсков Ю.В. Основы теории сигналов и систем. ВПИ, ВолгГТУ, 2003. 251 с.

47. Ключев В.И. Теория электропривода. М.: Энергоатомиздат, 1985. - 560 с.

48. Алексеев С. А., Медведев И. В. Применение оптических датчиков перемещения в мехатронных системах. Мехатроника, автоматизация, управление. Вып. 2. М: 2004.

49. Christopher P. Tools for embedded-systems debugging. Dr. Dobb"s Journal. 1993. 54 c.

50. Липаев В.В. Надежность программных средств. СИНТЕГ, Москва, 1998. - 151 с.

51. Богачев К.Ю. Операционные системы реального времени. М: МГУ им. Ломоносова, 2000. - 96 стр.

52. Anthony J. Masssa. Embedded software development with eCos. New Jersey, Prentice Hall PIR, 2003.-399 sheets.

53. Hiroaki Takada. The ITRON Project: Overview and recent results. RTCSA, 1998. - 25 sheets.

54. Олифер В.Г, Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы. С-П: Питер, 2002. - 672 с.

55. Самоненко Ю.А. Психология и педагогика. М: Юнити, 2001. - 272 с.

56. Тихонов А.О. Распределенная система разделения ресурсов лабораторных стендов по ме-хатронике (для специальности 652000): Диссертация, магистр техники и технологии. М: МГТУ «Станкин» 2001.- 105 стр.

57. Пьезоэлектрические двигатели вращения как элементы автоматических систем. Автореферат на соискателя к. т. н. М.:1998 г.-15 с. Код АР-1693;

58. Дьяченко В.А. Пьезоэлектрические системы мехатроники. //Мехатроники, № 2, 2002 / В. А Дьяченко, А. Б Смирнов.

59. Третьяков С.А. CAN локальная сеть контроллеров. / Электроника, Минск. № 9. С. 5-30. 61. Богачсв К. Ю. Операционные системы реального времени. М: МГУ им. Ломоносова,2000 96 с.

60. Каннингхэм В. Введение в теорию нелинейных систем. М.: Госэнергоиздат, 1962 - 456 с.

61. Карасев Н А. Прецизионные шаговые позиционеры со встроенным пьезодвигателем. Питер, 1997 65 с.

62. Науман Ш., Хендтик В. Компьютерные сети. Проектирование, создание, обслуживание. ДМК 2000-435 с.

63. Кульгин М. Ю. Технологии корпоративных сетей. Питер. 2000 511 с.

64. Robbins Н., Monro S.A. Stochastic approximation of method annals of mathematical statistics. 1951 Vol. 22. No 1.

65. Васильев П. E. Вибродвигатель / П. E. Васильев, К. М. Рагульскис, А.-А. И. Зубас //Вильнюс. 1979-58 с.

66. Васильев П. Е. Вибродвигатель / П. Е. Васильев, А.-А.И. Зубас, М.-А. К. Жвирблис // МГА 1981,-№12.

67. Жальнерович Е.А. и др. Применение промышленных роботов. Е.А. Жальнерович, A.M. Титов, А И. Федосов. - Беларусь. Минск. 1984. 222 с.

68. Вибродвигатель вращательного движения /Р.Ю. Бансевичюс, В. J1. Рагульскене, К. М. Рагульскис, Л.-А. Л. Штацас //ГМА- 1978 №15.

69. Пьезоэлектрический двигатель / Р. В. Узолас, А. Ю. Славенас, К. М. Рагульскис, И. И. Могильницкас // ГМА 1979.-№15.

70. Вибропривод / В. Л. Рагульскене, К. М. Рагульскис, Л.-А. Л. Штацас // ГМА 1981.-№34.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Самые массовые китовые объективы 18-55 у кэнона, никона, сони и других.
С этих объективов все начинают.
И потом они ломаются. Ломаются, когда уже приходит пора переходить на более продвинутые.
Они и сделаны на год не больше и то, если бережно к ним относиться.
Даже прибережном отношении со временем пластиковые детали начинают затирать.
Прилагается больше усилий, направляющие гнутся и зум ломается.
У меня на сайте есть статьи по ремонту механики.
Эта статья про ремонт ультразвукового мотора, который изнашивается со временем.

Как извлечь мотор, я не пишу, нет ничего проще.



В моторе нечему ломаться, три детали.




Для усложнения задачи возьмём мотор со сломаным шлейфом.

Ремонтируется прсто, всего три провода, средний земля.
Немного о работе самого двигателя, может, кто не знает.
На металлическое кольцо с ножками наклеены пъезопластины.
Когда к ним подается напряжение с частотой резонанса детали,это статор, он начинает колебаться.
Частота примерно 30 кГц, поэтому ультразвуковой мотор.
Ножки толкают ротор, он вращается и через редуктор двигает линзоблок вдоль оптической оси. Так происходит фокусировка объектива.




Плата мотора выглядит так. DC-DC блок питания и 2 фазоинвертора, три провода к мотору.

Для сравнения просто электромотор не ультразвуковой, у кэнона выглядит так.




Разводка большого USM мотора имеет ещё один немаловажный контакт.
Это четвёртый контакт подстройки частоты блока питания.
Дело в том, что резонансная частота статора меняется в зависимости от температуры.
Если частота питания отличается от резонансной частоты, двигатель работает медленнее.
Нужно сказать, что с подстройкой частоты заморачивается только кэнон, сигма не особо.




Три контакта у сигмы.


Это кэноновский в процессе ремонта, имеет 4 провода.

По большому счёту при сборке объектива на заводе частота блока питания должна подстраиваться до резонансной частоты статора.
В таком случае тупая замена мотора при ремонте невозможна. Нужно подстраивать частоту.

Вернемся к нашему мотору.
Поверхность статора очень чувствительна ко всяким инородным предметам, типа песчинок и нужна хорошая чистота поверхности ножек.
На работу двигателя влияет чистота поверхности и усилие прижимной пружины.
Будем считать, что усилие пружины не изменяется со временем, а вот поверхность истирается.
Я пробую шлифовать поверхность несколькими способами.
Для начала наждачкой 2500, результат плохой.
Ротор сразу нарабатывает задиры и двигатель клинит.
Пробую шлифовать в зеркало на войлочном круге.




Поверхность красивая, но ротор, как бы прилипает, пищит и двигатель плохо вращается.

Последний способ и самый результативный шлифовка с пастой гои на зеркале.

Оказалось важно даже не чистота поверхности а её плоскостность, она даёт наибольшую площадь соприкосновения ротора и статора.




Нет предела совершенству.

Шлейф меняется просто




Провода напаиваются и покрываются поксиполом.




Здесь одна тонкость, прижим деталей усиливается за счёт увеличения толщины статора и двигатель может не пойти.
Лишний клей убираем.




Пружину можно укоротить, но тогда прижим будет совсем непонятный.
В сборе, как то так.

И испытания прошу прощения за ссылки, я не знаю, как вставить медиафайлы, а гифки получаются большие

7. ПЬЕЗОЭЛЕКТРИЧЕСКИЕ МИКРОДВИГАТЕЛИ

Пьезоэлектрическими микродвигателями (ПМД) называются двигатели, в которых механическое перемещение ротора осуществляется за счет пьезоэлектрического или пьезомагнитного эффекта .

Отсутствие обмоток и простота технологии изготовления не являются единственными преимуществами пьезоэлектрических двигателей. Высокая удельная мощность (123 Вт/кг у ПМД и 19 Вт/кг у обычных электромагнитных микродвигателей), большой КПД (получен рекордный до настоящего времени КПД = 85%), широкий диапазон частот вращения и моментов на валу, отличные механические характеристики, отсутствие излучаемых магнитных полей и ряд других преимуществ пьезоэлектрических двигателей позволяют рассматривать их как двигатели, которые в широких масштабах заменят применяемые в настоящее время электрические микромашины.

§ 7.1. Пьезоэлектрический эффект

Известно, что некоторые твердые материалы, например, кварц способны в электрическом поле изменять свои линейные размеры. Железо, никель, их сплавы или окислы при изменении окружающего магнитного поля также могут изменять свои размеры. Первые из них относятся к пьезоэлектрическим материалам, а вторые - к пьезомагнитным. Соответственно различают пьезоэлектрический и пьезомагнитный эффекты.

Пьезоэлектрический двигатель может быть выполнен как из тех, так и из других материалов. Однако наиболее эффективными в настоящее время являются пьезоэлектрические, а не пьезомагнитные двигатели.

Существует прямой и обратный пьезоэффекты. Прямой - это появление электрического заряда при деформации пьезоэлемента. Обратный - линейное изменение размеров пьезоэлемента при изменении электрического поля. Впервые пьезоэффект обнаружили Жанна и Поль Кюри в 1880 году на кристаллах кварца. В дальнейшем эти свойства были открыты более чем у 1500 веществ, из которых широко используются сегнетова соль, титанат бария и др. Ясно, что пьезоэлектрические двигатели"работают" на обратном пьезоэффекте.

§ 7.2. Конструкция и принцип действия пьезоэлектрических микродвигателей

В настоящее время известно более 50 различных конструкций ПМД. Рассмотрим некоторые из них.

К неподвижному пьезоэлементу (ПЭ)- статору - прикладывается переменное трехфазное напряжение (рис. 7.1). Под действием электрического поля конец ПЭ последовательно изгибаясь в трех плоскостях, описывает круговую траекторию. Штырь, расположенный на подвижном конце ПЭ, фрикционно взаимодействует с ротором и приводит его во вращение.


Большое практическое значение получили шаговые ПМД (рис. 7.2.). Электромеханический преобразователь, например, в виде камертона 1 передает колебательные движения стержню 2, который перемещает ротор 3 на один зубец. При движении стержня назад собачка 4 фиксирует ротор в заданном положении.

Мощность описанных выше конструкций не превышает сотые доли ватта, поэтому использование их в качестве силовых приводов весьма проблематично. Наиболее перспективными оказались конструкции, в основе которых лежит принцип весла (рис. 7.3).

Вспомним, как движется лодка. За время, пока весло находится в воде, его движение преобразуется в линейное перемещение лодки. В паузах между гребками лодка движется по инерции.

Основными элементами конструкции рассматриваемого двигателя являются статор и ротор (рис.7.4). На основании 1 установлен подшипник 2. Ротор 3, выполненный из твердого материала (сталь, чугун, керамика и пр.) представляет собой гладкий цилиндр. Неотъемлемой частьюПМД является акустически изолированная от основания и оси ротораэлектромеханическая колебательная система - осциллятор (вибратор). В простейшем случае он состоит из пьезопластины 4 вместе с износостойкой прокладкой 5. Второй конец пластины закреплен в основании с помощью эластичной прокладки 6 из фторопласта, резины или другого подобного материала. Осцилятор прижимается к ротору стальной пружиной7, конец которой через эластичную прокладку 8 давит на вибратор. Длярегулирования степени прижатия служит винт 9.

Чтобы объяснить механизм образования вращающего момента, вспомниммаятник. Если маятнику сообщить колебания в двух взаимно перпендикулярных плоскостях, то в зависимости от амплитуд, частоты и фаз возмущающих сил его конец будет описывать траекторию от круга до сильновытянутого эллипса. Так и в нашем случае. Если подвести к пьезопластине переменное напряжение определенной частоты, ее линейный размербудет периодически изменяться: то увеличиваться, то уменьшаться, т.е. пластина будет совершать продольные колебания (рис. 7.5,а).


При увеличении длины пластины ее конец вместе с ротором переместится и впоперечном направлении (рис. 7.5,б). Это эквивалентно действию поперечной изгибающей силы, которая вызывает поперечные колебания. Сдвигфаз продольных и поперечных колебаний зависит от размеров пластины,рода материала, частоты питающего напряжения и в общем случае можетизменяться от 0 о до 180 о. При сдвиге фаз, отличном от 0 о и 180 о,контактная точка движется по эллипсу. В момент соприкосновения с роторомпластина передает ему импульс движения (рис. 7.5,в).

Линейная скорость вращения ротора зависит от амплитуды и частотысмещения конца осциллятора. Следовательно,чем больше напряжение питания и длина пьезоэлемента, тем больше должна быть линейная скоростьвращения ротора. Однако не следует забывать, что с увеличением длинывибратора, уменьшается частота его колебаний.

Максимальная амплитуда смещения осциллятора ограничивается пределом прочности материала или перегревом пьезоэлемента. Перегревматериала свыше критической температуры - температуры Кюри,приводит кпотере пьезоэлектрических свойств. Для многих материалов температураКюри превышает 250 0 С, поэтому максимальная амплитуда смещенияпрактически ограничивается пределом прочности материала. С учетом двукратного запаса по прочности принимают V P = 0,75 м/с.

Угловая скорость ротора


где D P - диаметр ротора.

Отсюда частота вращения в оборотах в минуту


Если диаметр ротора D P = 0,5 - 5 см, то n = 3000 - 300 об/мин.Таким образом, изменяя только диаметр ротора, можно в широких пределах изменять частоту вращения машины.

Уменьшение напряжения питания позволяет снизить частоту вращениядо 30 об/мин при сохранении достаточно высокой мощности на единицумассы двигателя. Армируя вибратор высокопрочными сапфировымипластинами, удается поднять частоту вращения до 10000 об/мин. Этопозволяет в широкой области практических задач выполнять привод безиспользования механических редукторов.

§ 7.3. Применение пьезоэлектрических микродвигателей

Надо отметить, что применение ПМД пока весьма ограничено. В настоящее время к серийному производству рекомендован пьезопривод дляпроигрывателя, разработанного конструкторами объединения "Эльфа" (г. Вильнюс), и пьезоэлектрический привод ведущего вала видеомагнитофона,созданного в объединении "Позитрон" .

Применение ПМД в аппаратах звуко- и видеозаписи позволяет по новому подойти к проектированию механизмов транспортирования ленты,поскольку элементы этого узла органически вписываются в двигатель,становясь его корпусом, подшипниками, прижимом и т.п. Указанные свойства пьезодвигателя позволяют осуществить непосредственный приводдиска проигрывателя путем установки на его валу ротора, к поверхностикоторого постоянно прижат осциллятор. Мощность на валу проигрывателяне превышает 0,2 Вт, поэтому ротор ПМД может быть изготовлен как изметалла, так и из пластмассы, например карболита.

Изготовлен опытный образец электробритвы "Харьков-6М" с двумя ПМДобщей мощностью 15Вт. На базе механизма настольных часов "Слава" выполнен вариант с шаговым пьезодвигателем. Напряжение питания 1,2 В;потребляемый ток 150 мкА. Малая потребляемая мощность позволяетпитать их от фотоэлементов.

Присоединение к ротору ПМД стрелки и возвратной пружины позволяетиспользовать двигатель в качестве малогабаритного и дешевого электроизмерительного прибора с круглой шкалой.

На основе линейных пьезодвигателей изготавливают электрическиереле с потребляемой мощностью от нескольких десятков микроватт донескольких ватт. Такие реле в рабочем состоянии не потребляют энергии.После срабатывания сила трения надежно удерживает контакты взамкнутом состоянии.

Рассмотрены далеко не все примеры использования ПМД. Пьезодвигатели могут найти широкое применение в различных автоматах, роботах,протезах, детских игрушках и в других устройствах.

Изучение пьезодвигателей только началось, поэтому не все ихвозможности раскрыты. Предельная мощность МПД принципиально неограничена. Однако конкурировать с другими двигателями они могут покав диапазоне мощностей до 10 ватт. Это связано не только сконструктивными особенностями ПМД, но и с уровнем развития науки итехники, в частности с совершенствованием пьезоэлектрических, сверхтвердых и износостойких материалов. По этой причине цель данной лекциизаключается прежде всего в подготовке будущих инженеров к восприятиюновой для них области техники перед началом промышленного выпускапьезоэлектрических микродвигателей.

Материал из Википедии - свободной энциклопедии

Ультразвуково́й дви́гатель (Ультразвуковой мотор , Пьезодвигатель , Пьезомагнитный двигатель , Пьезоэлектрический двигатель ), (англ. USM - Ultra Sonic Motor, SWM - Silent Wave Motor, HSM - Hyper Sonic Motor, SDM - Supersonic Direct-drive Motor и др.) - двигатель, в котором рабочим элементом является пьезоэлектрическая керамика , благодаря которой он способен преобразовать электрическую энергию в механическую с очень большим КПД , превышающим у отдельных видов 90 %. Это позволяет получать уникальные приборы, в которых электрические колебания прямо преобразуются во вращательное движение ротора , при этом крутящий момент , развиваемый на валу такого двигателя столь велик, что исключает необходимость применения какого-либо механического редуктора для повышения крутящего момента. Также данный двигатель обладает выпрямительными свойствами гладкого фрикционного контакта. Эти свойства проявляются и на звуковых частотах. Такой контакт является аналогом электрического выпрямительного диода. Поэтому ультразвуковой двигатель можно отнести к фрикционным электромоторам.

История создания и применения

В 1947 году были получены первые керамические образцы титаната бария и, уже с этого времени производство пьезоэлектрических моторов стало теоретически возможным. Но первый такой мотор появился лишь спустя 20 лет. Изучая пьезоэлектрические трансформаторы в силовых режимах, сотрудник Киевского политехнического института В. В. Лавриненко обнаружил вращение одного из них в держателе. Разобравшись в причине этого явления, он в 1964 году создаёт первый пьезоэлектрический мотор вращения, а вслед за ним и линейный мотор для привода реле . За первым мотором с прямым фрикционным контактом он создаёт группы нереверсивных моторов с механической связью пьезоэлемента с ротором через толкатели. На этой основе он предлагает десятки конструкций нереверсивных моторов, перекрывающих диапазон скоростей от 0 до 10 000 об/мин и диапазон моментов вращения от 0 до 100 Нм. Используя два нереверсивных мотора, Лавриненко оригинально решает проблему реверса. Интегрально на валу одного мотора он устанавливает второй мотор. Проблему ресурса мотора он решает, возбуждая крутильные колебания в пьезоэлементе.

На десятилетия опережая подобные работы в стране и за рубежом, Лавриненко разработал практически все основные принципы построения пьезоэлектрических моторов, не исключив при этом возможность работы их в режиме генераторов электрической энергии.

Учитывая перспективность разработки, Лавриненко совместно с соавторами, помогавшими ему реализовать его предложения, он защищает многочисленными авторскими свидетельствами и патентами. В Киевском Политехническом институте создается отраслевая лаборатория пьезоэлектрических моторов под руководством Лавриненко, организуется первое в мире серийное производство пьезомоторов для видеомагнитофона «Электроника-552». В последующем, серийно производятся моторы для диапроекторов «Днепр-2», кинокамер , приводов шаровых кранов и др. В 1980 году издательство «Энергия» печатает первую книгу по пьезоэлектрическим моторам , к ним появляется интерес. Начинаются активные разработки пьезомоторов в Каунасском политехническом институте под руководством проф. Рагульскиса К. М. . Вишневский В. С., в прошлом аспирант Лавриненко, выезжает в Германию, где продолжает работу по внедрению линейных пьезоэлектрических моторов на фирме PHyzical Instryment . Постепенное изучение и разработка пьезоэлектрических моторов выходит за пределы СССР . В Японии и Китае активно разрабатываются и внедряются волновые двигатели, в Америке - сверхминиатюрные двигатели вращения.

Конструкция

Ультразвуковой двигатель имеет значительно меньшие габариты и массу по сравнению с аналогичным по силовым характеристикам электромагнитным двигателем . Отсутствие обмоток, пропитанных склеивающими составами, делает его пригодным для использования в условиях вакуума. Ультразвуковой двигатель обладает значительным моментом самоторможения (до 50 % от величины максимального крутящего момента) при отсутствии питающего напряжения за счёт своих конструктивных особенностей. Это позволяет обеспечивать очень малые дискретные угловые перемещения (от единиц угловых секунд) без применения каких-либо специальных мер. Это свойство связано с квазинепрерывным характером работы пьезодвигателя. Действительно, пьезоэлемент , который преобразует электрические колебания в механические питается не постоянным, а переменным напряжением резонансной частоты . При подаче одного или двух импульсов можно получить очень маленькое угловое перемещение ротора . Например, некоторые образцы ультразвуковых двигателей, имеющие резонансную частоту 2 МГц и рабочую частоту вращения 0,2-6 об/сек, при подаче одиночного импульса на обкладки пьезоэлемента дадут в идеальном случае угловое перемещение ротора в 1/9.900.000-1/330.000 от величины окружности, то есть 0,13-3,9 угловых секунд.

Одним из серьёзных недостатков такого двигателя является значительная чувствительность к попаданию в него твёрдых веществ (например песка). С другой стороны, пьезодвигатели могут работать в жидкой среде, например в воде или в масле.

Принцип работы линейного пьезодвигателя, работающего на периодическом зацеплении

На основе пьезоэлектрических моторов разрабатывались: приводы антенн и камер наблюдения, электробритвы, приводы режущего инструмента, лентопротяжные механизмы, башенные уличные часы, приводы шаровых кранов, низкооборотные (2 об/мин) приводы рекламных платформ, электродрели, приводы детских игрушек и подвижных протезов, потолочные вентиляторы, приводы роботов и т. д.

Волновые пьезоэлектрические моторы также используются в объективах для однообъективных зеркальных фотоаппаратов . Вариации названия технологии в таких объективах различных производителей:

  • Canon - USM , UltraSonic Motor;
  • Minolta , Sony - SSM , SuperSonic Motor;
  • Nikon - SWM , Silent Wave Motor;
  • Olympus - SWD , Supersonic Wave Drive;
  • Panasonic - XSM , Extra Silent Motor;
  • Pentax - SDM , Supersonic Drive Motor;
  • Sigma - HSM , Hyper Sonic Motor;
  • Tamron - USD , Ultrasonic Silent Drive, PZD , Piezo Drive.
  • Samsung -SSA , Super Sonic Actuator;

В станкостроении такие двигатели применяются для сверхточного позиционировании режущего инструмента.

К примеру, есть специальные резцедержатели для токарных станков с микроприводом резца.

См. также

Напишите отзыв о статье "Ультразвуковой двигатель"

Литература

  • Авторское свидетельство № 217509 «Электрический двигатель», авт. Лавриненко В. В., Некрасов М. М. по заявке № 1006424 с приор. от 10 мая 1965 г.
  • США, Патент № 4.019.073, 1975 г.
  • США, Патент № 4.453.103, 1982 г.
  • США, Патент № 4.400.641, 1982 г.
  • Пьезоэлектрические двигатели. В. В. Лавриненко, И. А. Карташев, В. С. Вишневский. Изд."Энергия" 1980 г.
  • Вибродвигатели. Р. Ю. Бансявичюс,К. М. Рагульскис. Изд. «Мокслас» 1981 г.
  • Survey of the variousoperating principles of ultrasonicpiezomotors. K.Spanner, White Paper for ACTUATOR 2006.
  • Принципы построения пьезоэлектрических моторов. В. Лавриненко, ISBN 978-3-659-51406-7 , ISBN 3659514063 , изд. «Lambert», 2015, 236с.

Ссылки

Примечания

Отрывок, характеризующий Ультразвуковой двигатель

Борис в числе немногих был на Немане в день свидания императоров; он видел плоты с вензелями, проезд Наполеона по тому берегу мимо французской гвардии, видел задумчивое лицо императора Александра, в то время как он молча сидел в корчме на берегу Немана, ожидая прибытия Наполеона; видел, как оба императора сели в лодки и как Наполеон, приставши прежде к плоту, быстрыми шагами пошел вперед и, встречая Александра, подал ему руку, и как оба скрылись в павильоне. Со времени своего вступления в высшие миры, Борис сделал себе привычку внимательно наблюдать то, что происходило вокруг него и записывать. Во время свидания в Тильзите он расспрашивал об именах тех лиц, которые приехали с Наполеоном, о мундирах, которые были на них надеты, и внимательно прислушивался к словам, которые были сказаны важными лицами. В то самое время, как императоры вошли в павильон, он посмотрел на часы и не забыл посмотреть опять в то время, когда Александр вышел из павильона. Свидание продолжалось час и пятьдесят три минуты: он так и записал это в тот вечер в числе других фактов, которые, он полагал, имели историческое значение. Так как свита императора была очень небольшая, то для человека, дорожащего успехом по службе, находиться в Тильзите во время свидания императоров было делом очень важным, и Борис, попав в Тильзит, чувствовал, что с этого времени положение его совершенно утвердилось. Его не только знали, но к нему пригляделись и привыкли. Два раза он исполнял поручения к самому государю, так что государь знал его в лицо, и все приближенные не только не дичились его, как прежде, считая за новое лицо, но удивились бы, ежели бы его не было.
Борис жил с другим адъютантом, польским графом Жилинским. Жилинский, воспитанный в Париже поляк, был богат, страстно любил французов, и почти каждый день во время пребывания в Тильзите, к Жилинскому и Борису собирались на обеды и завтраки французские офицеры из гвардии и главного французского штаба.
24 го июня вечером, граф Жилинский, сожитель Бориса, устроил для своих знакомых французов ужин. На ужине этом был почетный гость, один адъютант Наполеона, несколько офицеров французской гвардии и молодой мальчик старой аристократической французской фамилии, паж Наполеона. В этот самый день Ростов, пользуясь темнотой, чтобы не быть узнанным, в статском платье, приехал в Тильзит и вошел в квартиру Жилинского и Бориса.
В Ростове, также как и во всей армии, из которой он приехал, еще далеко не совершился в отношении Наполеона и французов, из врагов сделавшихся друзьями, тот переворот, который произошел в главной квартире и в Борисе. Все еще продолжали в армии испытывать прежнее смешанное чувство злобы, презрения и страха к Бонапарте и французам. Еще недавно Ростов, разговаривая с Платовским казачьим офицером, спорил о том, что ежели бы Наполеон был взят в плен, с ним обратились бы не как с государем, а как с преступником. Еще недавно на дороге, встретившись с французским раненым полковником, Ростов разгорячился, доказывая ему, что не может быть мира между законным государем и преступником Бонапарте. Поэтому Ростова странно поразил в квартире Бориса вид французских офицеров в тех самых мундирах, на которые он привык совсем иначе смотреть из фланкерской цепи. Как только он увидал высунувшегося из двери французского офицера, это чувство войны, враждебности, которое он всегда испытывал при виде неприятеля, вдруг обхватило его. Он остановился на пороге и по русски спросил, тут ли живет Друбецкой. Борис, заслышав чужой голос в передней, вышел к нему навстречу. Лицо его в первую минуту, когда он узнал Ростова, выразило досаду.
– Ах это ты, очень рад, очень рад тебя видеть, – сказал он однако, улыбаясь и подвигаясь к нему. Но Ростов заметил первое его движение.
– Я не во время кажется, – сказал он, – я бы не приехал, но мне дело есть, – сказал он холодно…
– Нет, я только удивляюсь, как ты из полка приехал. – «Dans un moment je suis a vous», [Сию минуту я к твоим услугам,] – обратился он на голос звавшего его.
– Я вижу, что я не во время, – повторил Ростов.
Выражение досады уже исчезло на лице Бориса; видимо обдумав и решив, что ему делать, он с особенным спокойствием взял его за обе руки и повел в соседнюю комнату. Глаза Бориса, спокойно и твердо глядевшие на Ростова, были как будто застланы чем то, как будто какая то заслонка – синие очки общежития – были надеты на них. Так казалось Ростову.
– Ах полно, пожалуйста, можешь ли ты быть не во время, – сказал Борис. – Борис ввел его в комнату, где был накрыт ужин, познакомил с гостями, назвав его и объяснив, что он был не статский, но гусарский офицер, его старый приятель. – Граф Жилинский, le comte N.N., le capitaine S.S., [граф Н.Н., капитан С.С.] – называл он гостей. Ростов нахмуренно глядел на французов, неохотно раскланивался и молчал.
Жилинский, видимо, не радостно принял это новое русское лицо в свой кружок и ничего не сказал Ростову. Борис, казалось, не замечал происшедшего стеснения от нового лица и с тем же приятным спокойствием и застланностью в глазах, с которыми он встретил Ростова, старался оживить разговор. Один из французов обратился с обыкновенной французской учтивостью к упорно молчавшему Ростову и сказал ему, что вероятно для того, чтобы увидать императора, он приехал в Тильзит.
– Нет, у меня есть дело, – коротко ответил Ростов.
Ростов сделался не в духе тотчас же после того, как он заметил неудовольствие на лице Бориса, и, как всегда бывает с людьми, которые не в духе, ему казалось, что все неприязненно смотрят на него и что всем он мешает. И действительно он мешал всем и один оставался вне вновь завязавшегося общего разговора. «И зачем он сидит тут?» говорили взгляды, которые бросали на него гости. Он встал и подошел к Борису.
– Однако я тебя стесняю, – сказал он ему тихо, – пойдем, поговорим о деле, и я уйду.
– Да нет, нисколько, сказал Борис. А ежели ты устал, пойдем в мою комнатку и ложись отдохни.
– И в самом деле…
Они вошли в маленькую комнатку, где спал Борис. Ростов, не садясь, тотчас же с раздраженьем – как будто Борис был в чем нибудь виноват перед ним – начал ему рассказывать дело Денисова, спрашивая, хочет ли и может ли он просить о Денисове через своего генерала у государя и через него передать письмо. Когда они остались вдвоем, Ростов в первый раз убедился, что ему неловко было смотреть в глаза Борису. Борис заложив ногу на ногу и поглаживая левой рукой тонкие пальцы правой руки, слушал Ростова, как слушает генерал доклад подчиненного, то глядя в сторону, то с тою же застланностию во взгляде прямо глядя в глаза Ростову. Ростову всякий раз при этом становилось неловко и он опускал глаза.
– Я слыхал про такого рода дела и знаю, что Государь очень строг в этих случаях. Я думаю, надо бы не доводить до Его Величества. По моему, лучше бы прямо просить корпусного командира… Но вообще я думаю…
– Так ты ничего не хочешь сделать, так и скажи! – закричал почти Ростов, не глядя в глаза Борису.
Борис улыбнулся: – Напротив, я сделаю, что могу, только я думал…
В это время в двери послышался голос Жилинского, звавший Бориса.
– Ну иди, иди, иди… – сказал Ростов и отказавшись от ужина, и оставшись один в маленькой комнатке, он долго ходил в ней взад и вперед, и слушал веселый французский говор из соседней комнаты.

Ростов приехал в Тильзит в день, менее всего удобный для ходатайства за Денисова. Самому ему нельзя было итти к дежурному генералу, так как он был во фраке и без разрешения начальства приехал в Тильзит, а Борис, ежели даже и хотел, не мог сделать этого на другой день после приезда Ростова. В этот день, 27 го июня, были подписаны первые условия мира. Императоры поменялись орденами: Александр получил Почетного легиона, а Наполеон Андрея 1 й степени, и в этот день был назначен обед Преображенскому батальону, который давал ему батальон французской гвардии. Государи должны были присутствовать на этом банкете.
Ростову было так неловко и неприятно с Борисом, что, когда после ужина Борис заглянул к нему, он притворился спящим и на другой день рано утром, стараясь не видеть его, ушел из дома. Во фраке и круглой шляпе Николай бродил по городу, разглядывая французов и их мундиры, разглядывая улицы и дома, где жили русский и французский императоры. На площади он видел расставляемые столы и приготовления к обеду, на улицах видел перекинутые драпировки с знаменами русских и французских цветов и огромные вензеля А. и N. В окнах домов были тоже знамена и вензеля.
«Борис не хочет помочь мне, да и я не хочу обращаться к нему. Это дело решенное – думал Николай – между нами всё кончено, но я не уеду отсюда, не сделав всё, что могу для Денисова и главное не передав письма государю. Государю?!… Он тут!» думал Ростов, подходя невольно опять к дому, занимаемому Александром.
У дома этого стояли верховые лошади и съезжалась свита, видимо приготовляясь к выезду государя.
«Всякую минуту я могу увидать его, – думал Ростов. Если бы только я мог прямо передать ему письмо и сказать всё, неужели меня бы арестовали за фрак? Не может быть! Он бы понял, на чьей стороне справедливость. Он всё понимает, всё знает. Кто же может быть справедливее и великодушнее его? Ну, да ежели бы меня и арестовали бы за то, что я здесь, что ж за беда?» думал он, глядя на офицера, всходившего в дом, занимаемый государем. «Ведь вот всходят же. – Э! всё вздор. Пойду и подам сам письмо государю: тем хуже будет для Друбецкого, который довел меня до этого». И вдруг, с решительностью, которой он сам не ждал от себя, Ростов, ощупав письмо в кармане, пошел прямо к дому, занимаемому государем.
«Нет, теперь уже не упущу случая, как после Аустерлица, думал он, ожидая всякую секунду встретить государя и чувствуя прилив крови к сердцу при этой мысли. Упаду в ноги и буду просить его. Он поднимет, выслушает и еще поблагодарит меня». «Я счастлив, когда могу сделать добро, но исправить несправедливость есть величайшее счастье», воображал Ростов слова, которые скажет ему государь. И он пошел мимо любопытно смотревших на него, на крыльцо занимаемого государем дома.
С крыльца широкая лестница вела прямо наверх; направо видна была затворенная дверь. Внизу под лестницей была дверь в нижний этаж.
– Кого вам? – спросил кто то.
– Подать письмо, просьбу его величеству, – сказал Николай с дрожанием голоса.
– Просьба – к дежурному, пожалуйте сюда (ему указали на дверь внизу). Только не примут.
Услыхав этот равнодушный голос, Ростов испугался того, что он делал; мысль встретить всякую минуту государя так соблазнительна и оттого так страшна была для него, что он готов был бежать, но камер фурьер, встретивший его, отворил ему дверь в дежурную и Ростов вошел.
Невысокий полный человек лет 30, в белых панталонах, ботфортах и в одной, видно только что надетой, батистовой рубашке, стоял в этой комнате; камердинер застегивал ему сзади шитые шелком прекрасные новые помочи, которые почему то заметил Ростов. Человек этот разговаривал с кем то бывшим в другой комнате.
– Bien faite et la beaute du diable, [Хорошо сложена и красота молодости,] – говорил этот человек и увидав Ростова перестал говорить и нахмурился.
– Что вам угодно? Просьба?…
– Qu"est ce que c"est? [Что это?] – спросил кто то из другой комнаты.
– Encore un petitionnaire, [Еще один проситель,] – отвечал человек в помочах.
– Скажите ему, что после. Сейчас выйдет, надо ехать.
– После, после, завтра. Поздно…
Ростов повернулся и хотел выйти, но человек в помочах остановил его.
– От кого? Вы кто?
– От майора Денисова, – отвечал Ростов.
– Вы кто? офицер?
– Поручик, граф Ростов.
– Какая смелость! По команде подайте. А сами идите, идите… – И он стал надевать подаваемый камердинером мундир.
Ростов вышел опять в сени и заметил, что на крыльце было уже много офицеров и генералов в полной парадной форме, мимо которых ему надо было пройти.
Проклиная свою смелость, замирая от мысли, что всякую минуту он может встретить государя и при нем быть осрамлен и выслан под арест, понимая вполне всю неприличность своего поступка и раскаиваясь в нем, Ростов, опустив глаза, пробирался вон из дома, окруженного толпой блестящей свиты, когда чей то знакомый голос окликнул его и чья то рука остановила его.
– Вы, батюшка, что тут делаете во фраке? – спросил его басистый голос.
Это был кавалерийский генерал, в эту кампанию заслуживший особенную милость государя, бывший начальник дивизии, в которой служил Ростов.
Ростов испуганно начал оправдываться, но увидав добродушно шутливое лицо генерала, отойдя к стороне, взволнованным голосом передал ему всё дело, прося заступиться за известного генералу Денисова. Генерал выслушав Ростова серьезно покачал головой.

Самые массовые китовые объективы 18-55 у кэнона, никона, сони и других.
С этих объективов все начинают.
И потом они ломаются. Ломаются, когда уже приходит пора переходить на более продвинутые.
Они и сделаны на год не больше и то, если бережно к ним относиться.
Даже прибережном отношении со временем пластиковые детали начинают затирать.
Прилагается больше усилий, направляющие гнутся и зум ломается.
У меня об этом есть в постах по ремонту механики.
Этот пост про ремонт ультразвукового мотора, который просто изнашивается со временем.

Как извлечь мотор, я не пишу, нет ничего проще.

В моторе нечему ломаться, три детали.

Для усложнения задачи сломаем шлейф.

Ремонтируется прсто, всего три провода, средний земля.
И немного о работе самого двигателя, может, кто не знает.
На металлическое кольцо с ножками наклеены пъезопластины.
Когда к ним подается напряжение с частотой резонанса детали,это статор, он начинает колебаться.
Частота примерно 30 кГц, поэтому ультразвуковой мотор.
Ножки толкают ротор и происходит фокусировка.

Плата мотора выглядит так. DC-DC блок питания и 2 фазоинвертора, три провода к мотору.

Для сравнения просто электромотор не ультразвуковой, у кэнона выглядит так.

Разводка USM мотора имеет ещё один немаловажный контакт.
Это четвёртый контакт подстройки частоты блока питания.
Дело в том, что резонансная частота статора меняется в зависимости от температуры.
Если частота питания отличается от резонансной частоты, двигатель работает медленнее.
Нужно сказать, что с подстройкой частоты заморачивается только кэнон, сигма не особо.

Три контакта у сигмы.


Это кэноновский в процессе ремонта, 4 провода.

По большому счёту при сборке объектива на заводе частота блока питания должна подстраиваться до резонансной частоты статора.
В таком случае тупая замена мотора при ремонте невозможна. Нужно подстраивать частоту.

Вернемся к нашему мотору.
Поверхность статора очень чувствительна ко всяким инородным предметам, типа песчинок и нужна хорошая чистота поверхности ножек.
На работу двигателя влияет чистота поверхности и усилие прижимной пружины.
Будем считать, что усилие пружины не изменяется со временем, а вот поверхность истирается.
Я пробую шлифовать поверхность несколькими способами.
Для начала наждачкой 2500, результат плохой.
Ротор сразу нарабатывает задиры и двигатель клинит.
Пробую шлифовать в зеркало на войлочном круге.

Поверхность красивая, но ротор, как бы прилипает, пищит и двигатель плохо вращается.

Последний способ и самый результативный шлифовка с пастой гои на зеркале.

Оказалось важно даже не чистота поверхности а её плоскостность.

Нет предела совершенству.

Шлейф меняется просто

Провода напаиваются и покрываются поксиполом.

Здесь одна тонкость, прижим деталей усиливается за счёт увеличения толщины статора и двигатель может не пойти.
Лишний клей убираем.

Пружину можно укоротить, но тогда прижим будет совсем непонятный.
В сборе, как то так.

И испытания.

Отдельно двигатель вращается.

С редуктором вращается


Тубус объектива вращает


Это для общего развития замер напряжения на двигателе.
Пиковое напряжение доходит до 19 вольт, бъет чувствительно.

А знаете как проверить работает ли статор отдельно?
Погрузить его в воду и получите фонтан. Я не снял, а сейчас уже лень разбирать двигатель.

Да и ещё, эти двигатели не ремонтопригодны их просто меняют.
Причем, если заменить на донорский с поломанного объектива, неизвестно сколько он проработает.

Успехов в фотографии.

© 2024 bugulma-lada.ru -- Портал для владельцев автомобилей