Какой фермент не встречается у человека. Подробнее о ферментах (энзимах). Как понять, что ферментов в организме недостаточно

Главная / Двигатель

Сущность питания - это не высоко- или низкокалорийная пища, а полноценность пищи, то есть — наличие в ней основных, «строительных элементов» живой клетки — аминокислот (из которых сам организм построит необходимые ему протеины или белки), жирных кислот (из них организм также создаст свойственные одному ему жиры), углеводов, микроэлементов, витаминов, гормонов, ферментов (энзимов), клетчатки и других компонентов.

Как ферменты (энзимы) поддерживают защитные реакции организма?

Вся жизненная сила человека — в энзимах или ферментах. однако уже при температуре 49° С ферменты становятся инертными, а при 54° С — погибают, хотя замораживание продуктов в холодильнике сохраняет их.

Сегодня известно, что раковые клетки защищены белковой оболочкой, которая мешает иммунной системе их распознать. Удалить эту оболочку могут только ферменты, разоблачая, таким образом, злокачественные клетки. Вот почему онкологическим больным в их диете ограничивают мясо или исключают его вовсе: этим самым сберегают ферменты, уходящие на расщепление мяса, дают им возможность участвовать в разоблачении раковых клеток.

Так что, если вы едите что-то вареное, а мясо всегда подвергаете тепловой или иной обработке, то обязательно ешьте вместе с вареным продуктом в 3 раза больше сырых овощей.
Где взять ферменты. Откуда в наш организм поступают ферменты?

Организм получает ферменты, главным образом, из двух источников:
1) из растений — пищевые ферменты;
2) от самого организма, его обменных процессов (из печени, переваривающие ферменты — из поджелудочной железы) и от обмена веществ — из каждой клеточки организма.

К сожалению, количество ферментов, которые может продуцировать каждая клетка, ограничено! Потенциал ферментов можно использовать долго, если их постоянно дополнять в виде сырых овощей. При хорошем снабжении организма растительными ферментами и правильном сочетании продуктов можно есть все и не болеть.

Нам надо усвоить:
Жизненная сила пищи в ферментах, именно они — ключ к здоровью. Без ферментов ни минералы, ни витамины, ни гормоны не могут работать. Именно ферменты руководят формированием нашего организма. Вы можете иметь все — белки, жиры, углеводы, минералы, витамины, но без рабочих ферментов ваш организм не сможет начать процесс обновления, восстановления, очищения, созидания. Ферменты — это специальные белки, образованные специфическими аминокислотами, их называют биологическими катализаторами биохимических реакций, они работают в определенном режиме. Вы можете проглатывать килограммы витаминов, но без ферментов они не принесут вам никакой пользы, вы просто тратите свою энергию и продукты, потому что все это не усвоится и выведется с мочой.

Что такое плохая ферментация?
— непереваренные или плохо переваренные жиры ведут к сердечно-сосудистым заболеваниям и избыточному весу;
— непереваренные белки — к повышению температуры тела, к депрессии и раку;
— непереваренные углеводы — причина аллергии, астмы и артритов.
Почему же нам не хватает ферментов?

1. Многие из нас рождаются с малым их банком. Этот грех лежит не только на матери, но даже на прапрапрабабушке и прапрапрадедушке.
2. Продукты, которые мы получаем из растений, выращиваются на почвах, бедных ферментами.
3. Организму человека нужна сырая пища, а наши диеты состоят преимущественно из вареной, часто переваренной, обработанной, видоизмененной химическими добавками или, что еще хуже, пищи, подвергнутой радиации, в которой вообще отсутствуют ферменты, а если они и сохранились, то находятся в разрушенном состоянии.
4. Стресс и стрессовые ситуации, простуды, температурные реакции, любые болезни, беременность истощают ферменты: мы ежедневно теряем их с мочой и калом.
Чем важны для организма человека ферменты?

Ферменты постоянно работают в организме: без них не совершается ни один процесс. Они расщепляют пищу на клеточном уровне, создают из белков мышцы, выделяют из легких углекислый газ, поддерживают работу иммунной системы в ее борьбе с инфекцией, повышают уровень выносливости организма, помогают пищеварительной системе правильно функционировать. Кроме всего перечисленного, ферменты:
— уничтожают и выводят из организма различные жиры;
— предупреждают хроническое течение болезни;
— сохраняют нам молодость и помогают хорошо выглядеть;
— усиливают энергию и выносливость;
— препятствуют гормональному дисбалансу в организме.
Как мы можем пополнять запас ферментов?

Есть один способ восполнить запас ферментов: потребление сырой пищи. Только «живая», естественная, натуральная пища богата ферментами, приготовленными из растений, выращенных на органических почвах без всяких химических удобрений. В нашем рационе должны обязательно присутствовать сырые овощи, потому что они поставляют нам этот эликсир Жизни,— ферменты, помогающие усвоить, ассимилировать все ему необходимое и выделить все вредное. Ферменты сырых овощей — это ключ к здоровью.

Ферментов, работающих в организме, множество. Каждый из них имеет свое назначение. Протеаза — фермент переваривания белка, липаза переваривает жиры; амилаза переваривает углеводы и целлюлаза — переваривает клетчатку.

Имеются 22 пищеварительных фермента, которые вырабатывает поджелудочная железа. Они продолжают процесс пищеварения в 12-перстной кишке, но только при условии, чтобы там была щелочная среда.

В организме работают также тысячи ферментов обмена веществ. Они участвуют в дыхании, движении, речи, поведении и в работе иммунной системы. Кроме того, в человеческом организме находится специальный тип обменных ферментов оксидантов — они превращают свободные радикалы (токсический кислород) в безвредные продукты: воду и кислород.

Но ферменты имеют свои особенности. При недостатке ферментов организм перераспределяет их, истощая, таким образом, ферментативный банк, с которым мы родились, ослабляя тем самым его жизненные функции и согласованную работу всех органов. Несоответствующая потребностям организма человека пища (животная, вареная, рафинированная) усваивается лишь частично. Все, что не усвоено,— гниет, бродит, порождает токсемию.

Иммунная система начинает бороться с плохо переваренной, всосавшейся пищей точно так же, как она борется с инфекцией или другими опасными чужеродными агентами. Это истощает и ослабляет организм.

С каждым годом наблюдается снижение процента здоровых людей.

Ферменты — вот магический ключ к здоровью. После кислорода и воды ферменты стоят на третьем месте в той взаимосвязи, в которой функционируют все элементы, обеспечивающие четкую работу нашего организма. Пищевые ферменты — вот наиболее важный фактор нашей с вами диеты. И только сырая пища включает те из них, которые наиболее активны.

Эффект плохого и вредного питания сказывается потом, много-много лет спустя, и требуется смена 3—4 поколений, чтобы изменить этот отрицательный эффект в естественном и верном направлении».

Что мы должны знать о ферментах.

1. Наш организм не вырабатывает пищевых ферментов. Мы получаем их лишь тогда, когда съедаем сырую пищу или когда принимаем ферменты в виде диетических добавок. Наш организм вырабатывает пищеварительные ферменты в поджелудочной железе, но они не работают в желудке. Они работают только в двенадцатиперстной кишке при условии сохранения там слабощелочной реакции. Поэтому, если у вас нарушен кислотно-щелочной баланс, ферменты вашей поджелудочной железы работать не будут.

2. Считается, что соляная кислота желудочного сока расщепляет белок. Это не так. Соляная кислота не расщепляет белок, она лишь превращает фермент пепсиноген в его активную форму, называемую пепсином, — фермент, расщепляющий белок, который начинает свою работу в желудке.

3. Пищевые ферменты работают в желудке, а ферменты поджелудочной железы работают в двенадцатиперстной кишке. Пищевые ферменты отличаются от других растительных ферментов тем, что работают при широком диапазоне, то есть сохраняют активность как в желудке, так и в двенадцатиперстной кишке. А вот панкреатин — фермент поджелудочной железы, работает в узкощелочной среде РН (7,8—8,3) и разрушается в кислой среде желудка.

4. Обычно, если кислотность снижена, врачи назначают пациенту соляную кислоту, чтобы повысить кислую среду и улучшить переваривание белка. Правильно ли это? Нет, это не так. Это «подкисление» в первую очередь меняет РН крови. Срабатывает буферная система нейтрализации кислоты щелочью. Соляная кислота лишает активности ферменты поджелудочной железы, ухудшая пищеварение. Оптимального результата можно достичь с помощью пищевых ферментов, а не введением в организм кислого или добавок с соляной кислотой. Кроме того, это беспорядочное глотание — нагрузки на почки, которым нужно выделить избыток кислот. Поэтому, когда анализ мочи выявляет ее кислую реакцию, надо выяснить, не связана ли эта реакция с приемом добавок, содержащих соляную кислоту, или злоупотреблением кислой пищей (мясо, белковые напитки, сахар, жиры), или (увы!) уже развивающимся диабетом.

5. Если кислотность слишком велика, обычно рекомендуют диетические добавки в виде солей кальция. При этом считают, что это заодно предупредит развитие такой болезни, как размягчение костей (остеопороз). Но это отнюдь не так! Кальциевые соли имеют эффект, противоположный соляно- кислому эффекту. Уже доказано, правильнее было бы наоборот — ни в коем случае этот кальций не пить. Именно на фоне щелочной реакции неорганический кальций только превратится в соль щавелевой кислоты и будет способствовать развитию артрита и других заболеваний костей и суставов, а также образованию катаракты. В то же время процесс пищеварения можно легко скорректировать, употребляя больше сырой пищи, в которой и содержатся все пищевые ферменты.

6. Ошибочно считают, что невозможно установить недостаток в организме ферментов. Между тем недостаток ферментов в организме проявляется определенными симптомами ферментного голодания: лихорадка, жар; увеличение поджелудочной железы (чаще всего встречается у пациентов, которые едят переваренную пищу, где все ферменты погибли); увеличение количества белых кровяных шариков после употребления вареной, консервированной пищи в отличие от сырой пищи, богатой ферментами, которая никогда не дает такого отрицательного эффекта; появление в моче продуктов, указывающих, что в кишечнике не все благополучно в результате плохого переваривания белка из-за отсутствия нужных ферментов.

Ферменты, которые мы получаем вместе с сырой пищей, важны не только для пищеварения, но и для поддержания здоровья, предупреждения болезней. Если мы едим свежие сырые продукты на пустой желудок, они попадают в кровяное русло и проделывают следующую работу: разрушают белковые структуры вирусов и бактерий, а также любые другие вредные субстанции, появляющиеся при воспалениях. Поэтому ферменты (особенно свежих соков, богатых ферментами) очень эффективны: во время воспалительных процессов подобно холоду они контролируют отек, красноту, жар, острую боль.

Ферменты, переваривающие белки, имеют значительный лечебный эффект при заболевании глаз, ушей и почек. Это первая линия обороны иммунной системы.

Амилаза — это фермент, переваривающий углеводы. Но она также устраняет гной, состоящий, как известно, из погибших белых кровяных шариков. Например, при абсцессе зубов, десен, когда антибиотики плохо помогают, улучшение может наступить, если принимать соответствующие дозы амилазы, которая сражается с гноем: абсцесс исчезает в короткое время.

Амилаза и липаза помогают также лечить кожные болезни: крапивницу, псориаз и контактные дерматиты; очищают легкие и бронхи от слизи; комбинация ферментов сегодня используется при лечении астмы, чтобы ликвидировать приступы. Однако эффект во всех случаях зависит от адекватного количества используемых ферментов.

Фермент липаза переваривает жиры, включая жиры пищи и флоры, состоящих из клеток, окруженных жировой оболочкой, также разрушает жировую оболочку некоторых вирусов, увеличивает проницаемость клетки: вирус становится доступным и переваривается пищевыми ферментами.

Что лучше — есть пищу с высоким содержанием липазы или принимать эту же липазу в виде диетических добавок? Конечно, лучше есть пищу с высоким содержанием ферментов, чем употреблять фармацевтически приготовленные ферменты.

Надо просто знать их источники:
1. Зерновые, овощи и фрукты, орехи, выращенные в естественных органических условиях, а не на искусственных почвах, да еще с обилием разных химических добавок — вот главные поставщики ферментов. Необходимо ежедневно употреблять сырые салаты из овощей домашнего приготовления, свежий сок из овощей и фруктов. Можно, конечно, есть овощи, приготовленные на пару, но их уже должно быть в 3 раза меньше, чем сырых.
2. Современная наука еще не научилась производить синтетическим путем полноценные ферменты. Поэтому только сырая пища сохраняет ферменты, так как эти пружины в живой жизни очень чувствительны к температуре. Употребление сырой пищи помогает сохранить запас своих собственных ферментов, что важно для их мобилизации организмом в любой нужный момент.
Какие растения богаты ферментами?

Особенно богаты ферментами: ростки семян и зерен, их побеги; хрен, чеснок, авокадо, киви, папайя, ананасы, бананы, манго, соевый соус. Его научились приготавливать более тысячи лет назад. Это натуральный продукт ферментации соевых бобов с морской солью, используемый в качестве добавки в суп, каши, овощи. Такая крупа, как перловка, и овощи — брокколи, капуста белокочанная, брюссельская, цветная, трава пшеницы, содержащая хлорофилл, и большинство зеленых овощей содержат естественную, натуральную форму фермента, необходимого для нормальной работы организма. Но если у вас нет никакой возможности употреблять сырую пищу хотя бы в ограниченном количестве, то пейте соки овощей, только сразу 5 видов (в одном стакане), можете принимать ферменты 1—3 раза в день во время еды в виде диетических добавок. Пищевые ферменты помогают сохранять энергию нашим органам, мышцам, тканям. Они превращают диетический фосфор в костную ткань; выводят токсические вещества из кишечника, печени, почек, легких, кожи; концентрируют железо в крови; защищают кровь от нежелательных продуктов, превращая их в субстанции, легко выделяемые из организма.

Пищеварительные ферменты:

* амилаза — она начинает расщеплять углеводы уже в полости рта, выделяясь вместе со слюной;
* протеаза желудочного сока, переваривающая белки;
* липаза, расщепляющая жиры.

Все эти три фермента находятся в соке поджелудочной железы, поступающем в кишечник. Здоровый организм также вырабатывает ферменты и каталазу, которые помогают удалять свободные радикалы, все увеличивающиеся с возрастом. Для выработки этих ферментов организм нуждается в таких минералах, как цинк и марганец.

* панкреатин — фермент поджелудочной железы, который работает в щелочной среде тонкого кишечника;
* ферменты трипсин и химотрипсин — участвуют в расщеплении белков;
* ферменты аспергиллус — грибкового происхождения,— попадая в кровяное русло, могут оказывать благотворное лечебное воздействие, расщепляя фибрин, помогая в рассасывании тромбов. Замечено, что ферменты аспергиллус, совместно с животными ферментами трипсином и химотрипсином, эффективны в лечении рака.

Плохое пищеварение, сниженное всасывание, слабая работа поджелудочной железы, жирный стул, болезни кишечника, непереносимость лактозы молока, тромбоз сосудов — все это требует приема ферментов аспергиллуса совместно с ферментами трипсином и химотрипсином.

При потере веса необходимо исключить из пищи продукты, содержащие пуриновые вещества, так как кислый желудочный сок в большинстве случаев разрушает их: особенно липазу. Это ведет к плохому перевариванию жира.

Панкреатит — следствие большого количества пурина, а это может нанести вред почкам.

Сравнительное действие ферментов говорит о высокой активности всех групп пищевых ферментов, работающих как в кислой, так и в щелочной среде. Вот почему так эффективны и так нужны сырые овощи, богатые пищевыми ферментами, кстати, никогда не имеющие никаких противопоказаний.

Формирование понятия “фермент” в школьном курсе биологии и связь с школьным курсом химии .


1. Введение


2. Формирование понятия “фермент” в курсе “Анатомия,физиология и гигиена человека”:


а) определение понятия “фермент” в теме “Общее знакомство с организмом человека”;

б) развитие понятия “фермент” в теме “Пищеварение”;


г) формирование понятия “фермент” в теме “Обмен веществ”;

3. Формирование понятия “фермент” в курсе “Общая биология”:


а )формирование понятия “фермент” в теме “Учение о клетке”


б) завершение развития понятия “фермент” в теме “Обмен веществ и превращение энергии в клетке”

4. Методические разработки проведения факультативных занятий по теме “Фермент” в Х1 классе.


5 .Выводы.


ВВЕДЕНИЕ


Одним из фундаментальных понятий, как биологии,так и химии является понятие “фермент”.Изучение ферментов имеет большое значение для любой области биологии,а также для многих отраслей химической,пищевой и фармацевтической промышленности,занятых производством биологически активных веществ для медицины и народного хозяйства.

Поэтому одним из ключевых понятий общей биологии является понятие “фермент”.В школьном курсе биологии оно начинает формироваться с 1Х класса в курсе “Анатомия,физиология и гигиена человека”.В Х классе с этим понятием учащиеся не встречаются,а в Х1-- оно дается при объяснении ряда важных биологических положений на качественно новом уровне.В школьном курсе химии понятию “фермент” уделяется мало внимания,упоминание о ферментах можно найти только в Х1 классе,поэтому на предмет биология выпадает главная роль при знакомстве учащихся с одним из главных понятий биологии и химии.



Формирование понятия “фермент” в курсе “Анатомия,физиология и гигиена человека”

Впервые с термином “фермент” учащиеся встречаются во вводной главе курса “Анатомия,физиология и гигиена человека”,которая называется “Общее знакомство с организмом человека”,в ней дается общее представление о жизненных процессах клетки.Здесь же впервые дается определение этому понятию:ферменты - это белки,ускоряющие химические превращения,происходящие в клетке.Акцент,в определении,на белковую природу ферментов позволяет создать учащимся общее преставление о строении,составе и свойствах ферментов,по аналогии с белками.

К сожалению,при изучении тем: “Опорнодвигательная система”,”Кровь”, “Кровообращение” и “Дыхание”,которые по плану изучения анатомии идут после главы “Общее знакомство с организмом человека”,понятие “фермент” не упоминается и,следовательно,не закрепляется и из активной биологической лексики “выпадает”.

Нам кажется,что было бы целеособразнее,определение понятия “фермент” давать учащимся при изучении темы “Пищеварение”,где на конкретных примерах можно объяснить биологическую роль,механизм действия,значение и другие свойства ферментов.Характерной особенностью этой темы с точки зрения понятия “фермент” является то,что разбирается процесс пищеварения дробно,т.е. отдельно для каждого отдела желудочно-кишечного тракта.Это позволяет познакомить учащихся с большим количеством ферментов,а для них легче запомнить.

При изучении этой темы учащиеся узнают,что расщепление основных компонентов пищи представляет собой сложный биохимический процесс,который осуществляется с помощью пищеварительных ферментов.Важно создать у учащихся представление о ферментах,как строго спецефичной группе белков:одни ферменты воздействуют на углеводы,другие на белки,третьи --- на жиры.Также создать понятие о четкой функциональной специализации ферментов на определенные биологические субстра

ты.В этой же теме дается представление об оптимальных условиях для проявления спецефических свойств ферментов:температура,кислотность среды.

При изучении пищеварения в ротовой полости ученики знакомятся с расщеплением крахмала.Здесь они узнают,что в слюне содержится два фермента,которые вырабатываются в эпителиальных клетках слюнных желез.Под действием одного из них крахмал расщепляется на вещества,имеющие менее сложные молекулы - солодовый сахар,в присутствии другого фермента солодовый сахар превращается в глюкозу.От учителя учащиеся узнают,что в слюне содержатся амилолитические ферменты:птеолин,расщепляющий крахмал до мальтозы,и мальтаза,расщепляющая мальтозу до глюкозы.Условия действия ферментов слюны- это слобощелочная среда и температура 37 градусов по Цельсию.

При изучении пищеварения в желудке учащиеся знакомятся с новым ферментом,содержащимся в желудочном соке - пепсином.Пепсин расщепляет белки и может действовать только при температуре нашего тела и в кислой среде.Такую среду в желудке создает соляная кислота,которая содержится в самом желудочном соке.

Пищеварение в двенадцатиперстной кишке промсходит под воздействием поджелудочного сока.Три фермента этого сока действуют на все органические соединения.Под влиянием трипсина в основном завершается начавшееся в желудке расщепление белков до образования растворимых в воде аминокислот.Под действием липазы происходит расщепление жиров на глицерин и жирные кислоты.В присутствии фермента амилазы крахмал,не подвергшийся пищеварительному действию слюны,расщепляется до глюкозы.Ферменты поджелудочного сока действуют только в щелочной среде при температуре нашего тела.

При характеристике ферментативной деятельности пищеварительных

желез,в различных отделах пищеварительного тракта,важно обратиь внимание учащихся на спецефичность их расщепляющего действия на опреде-

ленные биологические вещества.Так в ротовой полости проявляется действие ферментов,расщепляющих крахмал;в желудке -расщепляющие бел

ки;в кишечнике,под действием ферментов секрета поджелудочной железы происходит расщепление всех основных компонентов пищи: белков,углеводов и жиров.

При изучении темы “Пищеварение”,для лучшего усвоения материала целесообразно использовать таблицу,в которую входили бы отделы пищеварительного тракта;ферменты,содержащиеся в секрете желез каждого из этих отделов;субстраты и продукты реакции,а также условия протекания реакции.

Например:


Отделы пищевари-

тельного тракта

Ферменты

Действие фермента

Оптимальные усло-

вия работы фермен.

1 .Ротовая полость

(слюнные железы:


а) Птеолин

б) Мальтаза

Крахмал а) Маль-

Мальтоза б) Глю-



Слабощелочная сре

да.Температура 37-

38 градус.по Цел.

2. Желудок

(желудочный сок)



На белки.


Кислая Среда.

Температура 37гр.

3 .Двенадцатиперс- тная кишка

(секрет поджелудоч-

ной железы)


б)Трипсин

в)Химотрипсин

г)Амилаза

Жиры а) Глице-

рин + жирные к-ты

Белки б) Амино-

Крахмал г) Глюко-


Щелочная Среда.

Температура 37гр.


В заключении нашего обсуждения темы “Анатомия, физиология и гигиена человека “ можно сделать следующие выводы: в этом курсе учащиеся знакомятся с ферментами в ознакомиткльном плане, их действии на уровне всего организма.

К сожалению,при изучении других тем данного курса,понятие “фермент” не затрагивается.Это очень плохо,т.к. у школьников создается впечатление,что ферменты участвуют только в процессах пищеварения.Поэтому задача учителя в следующих темах,таких как “Газообмен в легких и тканях”,”Белковый,жировой,углеводный обмен” не забывать знакомить учащихся с ферментами,принимающими участие в этих процессах.Для учеников 9 класса не важен механизм этого участия, важно,чтобы они усвоили,что все реакции нашего организма катализируются какими-то определенными ферментами.

Уже в 9 классе учитель должен показать важность межпредметных связей между биологией и химией.Следует использовать знания,полученные учениками при изучении неорганической химиии в курсе 8-9 классов (темы:”Кислород,оксиды,горение”, ”Водород”, ”Кислоты,соли,основания”, “Строение вещества”).


Формирование понятие “фермент” в курсе “Общая биология”

Дальнейшее знакомство с ферментами ученики продолжают в курсе “Общая биология”. Здесь происходит изучение ферментов на качественно новом уровне,закладываются основы для понимания важнейших процессов нашего организма.В этом курсе учащиеся изучают ферменты уже как часть нового класса органических соединений,с которым они позже встретяться в курсе “Органической химии”.Поэтому для учителя очень важно заложить начальные знания,которые потом понадобятся на уроках химии. Именно в этих курсах биологии и химии видна важность межпредметных связей,которую необходимо показать и ученикам.

Первая тема курса - “Учение о клетке”.Здесь дается понятие фермента как катализатора всех жизненно важных биохимических реакций,протекающих в элементарной структурной единице всего живого-клетке. При изучении этой темы учащиеся узнают о внутриклеточной локализации ферментов:в митохондриях,лизосомах,ядре,в мембранах или на мембранах.Так в частности,понятие “лизосома” объясняется следующим

образом: расщепление пищевых веществ с помощью ферментов называется лизисом,отсюда и название-лизосома.Внутри них сконцентрированы ферменты,которые способны расщеплять все пищевые вещества,поступающие в клетку.”Для лучшего объяснения этой темы,а также для лучшего усвоения ее учащимися можно использовать таблицу: “Локализация ферментов внутри клетки” (Т.Т.Березов,Б.Ф.Коровкин,”Биологическая химия”,1982г.)


Цитоплазма Митохонд. Лизосомы Микросом. Плазматич. Ядро

фракц.ЭПС

Ферм.глико Пируват- кислые Рибосомные Аденилат- Фер.реп-

лиза дегидро- гидро- ферменты циклаза, ликации

геназный лазы белков.синт. АТФ-аза ДНК

комплекс

Ферменты Ферменты --- Фер.синтеза --- ---

пентозного цикла фосфолипид.,

пути Кребса синтез.холисте



Фер.активац. Ф.цикла --- Гидроксилазы --- ----

аминокислот жир.к-т



Ф.синтеза Ф.окислит. --- --- --- ----

жирных фосфори-

к-т лирования



Фосфорилаза --- --- --- --- ---

гликоген-



Завершение развития понятия “фермент” происходит в теме “Обмен веществ и превращение энергии в клетке”. В этой теме полное представление о ферменте,ферментативной реакции,значении их для обмена.Здесь дается учащимся представление о структуре,механизме действия,классификации ферментов.Вводятся новые понятия,которые позже будут использоваться в химии.Это субстратный комплекс,кофермент,регуляторный комплекс.Про-

цессы ассимиляции и диссимиляции,их взаимосвязь в общем процессе метаболизма.Также важно объяснить,что все ферментативные процессы регулируются. Дальше в этой работе будет рассмотрен один из возможных вариантов проведения факультативного занятия по этой теме,где уже более детально будут рассмотрены эти вопросы.

Таким образом формирование понятия “фермент”,начинается в 9 классе,идет от простого к сложному.Наиболее сложный материал в 11 клас

се.Это связано с разным уровнем развития учеников 9 и 11 классов,с разной их способностью к восприятию сложного научного материала.

Благодаря тому,что учащиеся знакомятся с понятием “фермент” в курсе биологии достаточно рано и почти на протяжении всего курса все время с ним сталкиваютс и познают все глубже и глубже,это облегчает задачу учителя в курсе химии. А так как мы учителя биологии и химии,то это особенно важно для нас. На стыке этих двух наук учащихся важно познакомить с проблемой использования ферментов в промышленности.Этому мало уделяется внимания,как в курсе биологии,так и химии.Поэтому можно провести отдельное факультативное занятие, как по химии,так и по биологии вместе.Темой для него послужит роль фермента в хозяйственном комплексе: в химической,пищевой,фармацевтической промышленности.Можно дать учащимся темы по которым они подготовят маленькие выступления по использованию того или иного фермента.В качестве материала в помощь может послужить следующая таблица:

“Некоторые примеры использования ферментов в промышленности”


Фермент Промышленность Использование

Амилазы Пивоваренная Осахаривание содерж.в солоде крахмала

(расщепляют Тектильная Удаление крахмала,наносимого на нити во

крахмал) время шлихтования


Хлебопекарная Крахмал в глюкозу.Дрожжевые клетки

сбраживая глюкозу,образуют CO2 ,кото

рые разрыхляют тесто.

Протеазы

(расщепяют



Папаин Пивоваренная Этапы процесса пивоварения,регулирующие

кол-во пены

Мясная Мягчение мяса.


Фицин Фармацевтическая Добавки к зубным пастам для удаления зуб

ного налета

Фотография Смывание желатины с использованной плен

Трипсин Пищевая Произ-во продуктов для детского питания

Пепсин Пищевая Произ-во “готовых” каш


Разработка методики факультативных занятий и системы самоконтроля .

Мы хотели бы предложить методические разработки для проведения факультативных занятий по теме “Ферменты и их роль “.Эти занятия должны проводиться,когда учащиеся проходят тему “Обмен веществ и энергии в клетке”.Главный смысл этих факультативных занятий-это более углубленное изучение учащихся с ферментами и их ролью.Это можно сделать на достаточно хорошем уровне,т.к. к этому моменту шклольники уже неоднократно сталкивались с понятием “фермент” в курсе биологии и проходят такие классы органических соединений,как “Белки”,”Аминокислоты” в химии. Это дает учителю возможность во-первых более полно,и на качественно новом уровне говорить о биохимических процессах,проходящих в организме человека и роли в них ферментов в курсе биологии и во-вторых обратить внимание учащихся на важность таких классов соединений как “Белки”,”Аминокислоты” в процессах,протекающих в клетках и в организме в целом.Данные факультативные занятия целесообразно проводить в кабинетах химии и биологии,т.к. важно провести ряд химических опытов.

Занятие N1 “Знакомство со строением ферментов,их классификацией,ролью в организме”.

Ферменты-вещества белкововой природы,способные ускорять протекание химических реакций.Роль ферментов в жизнедеятельности колоссальна.

Благодаря своей функции (каталитической) разнообразные ферменты

обеспечивают быстрое протекание в организме огромного числа химических реакций.В настоящее время выделены и изучены сотни ферментов известано,что живая клетка может содержать до 1000 различных ферментов,каждый из которых ускоряет ту или иную химическую реакцию.

Ферменты-это эффективные биологические катализаторы.(Понятие “катализатор” для учеников знакомо из курса неорганической химии.) Они участвуют в большинстве химических превращений,происходящих в организме.Все процессы,протекающие в организме,т.е. процессы метаболизма деляться на два процесса:прцесс ассимиляции и прцесс диссимиляции.Важно дать определения этих двух понятий и это можно сделать следующим образом:

Ассимиляция -множество химических реакций,осуществляемых с участием ферментов,позволяющих использовать поступающие в организм вещества для синтеза специфичных для данного организма белков,нуклеиновых кислот,липидов,полисахаридов и т.д.,что обеспечивает рост,развитие,обновле-

ние организма и накопление запасов,используемых в качестве источников энергии.

Диссимиляция -это разрушение органических соединений с превращением белков,жиров,углеводов,включая введенные в организм с пищей,в простые вещества.

Так ферменты катализируют каждый из этих процессов.Таким образом ферментативные реакции подразделяются на реакции синтеза(ассимиляции) и реакции распада(диссимиляции).Эти реакции в организме взаимосвязаны,обеспечивая постоянное обновление тканей организма и следовательно постоянство внутренней Среды организма.Важно подчеркнуть для учащихся различие в протекании процессов метаболизма у аутотрофных и гетеротрофных организмов.Так у аутрофных организмов преобладает процесс ассимиляции,т.к. в процессе фотосинтеза,из неорганических соединений,и непосредственным использовании энергии све

та,соэдаются сложные органические вещества.У гетеротрофов построение собственного организма и обеспечение всех жизненных функций идет за счет энергии,получаемой в процессе диссимиляции органических веществ.Можно сделать вывод,что все биохимические процессы,протекающие в клетке и в организме,можно отнести к процессам ассимиляции,либо к процессам диссимиляции.Попав внутрь клетки,питательные вещество претерпевает ряд химических изменений,катализируемых ферментами.

Теперь можно перейти к строению.Для выполнения своих функций ферменты имеют определенное строение.Для углубления представлений учащихся о структуре и классификации ферментов можно ввести следующие понятия:

1. Ферменты могут быть протеинами(простыми белками) и протеидами(сложными белками).Во втором случае в состав ферментов входит добавочная группа.Характерной особенностью ферментов-протеидов является,что ни основная белковая часть,ни добавочная группа по отдельности не обладают каталитической активностью.Только их комплекс прявляет ферментативные свойства.Добавочная группа(кофактор)-небелкового происхождения (ионны металлов,различные органические соединения).

2. Фермент имеет следующие центры:

а) Активный центр (Результаты исследований показали,что молекулы большинства ферментов во много раз больше,чем молекулы тех субстратов,которые взаимодействуют с данным ферментом,и что в контакт с субстратом в фермент-субстратном комплексе вступает лишь небольшая часть молекулы фермента,получившая название активного центра),

б) Субстратный центр,

в) Регуляторный центр.


Также на данном занятии необходимо познакомить учащихся с классификацией ферментов.Можно дать историческую справку развития классификации ферментов.Так по первой в истории изучения ферментов класси

фикации,ферменты делили на две группы: 1-ускоряюшие реакции гидролиза и 2- на ускоряющие реакции негидролитического распада.Затем была сделана попытка разбитьферменты на классы по числу субстратов,участвующих в

реакции.Одновременно развивалось направление,где в основу классификации ферментов был положен тип реакции,подвергающейся каталитическому воздействию.Наряду с ферментами,ускоряющими реакции гидролиза(гидро-лазы),были изучены ферменты,участвующие в реакциях переноса атомов и атомных групп,расщеплении,различных синтезах.

По этому принципу все ферменты делят на 6 классов:

1 .Оксидоредуктазы-ускоряют реакции окисления-восстановления

2 .Трансферазы-реакции переноса атомных групп и молекулярных остатков

3 .Гидролазы- реакции гидролитического распада и синтеза

4 .Лиазы-негидролитическое отщепление от субстратов определенных групп атомов

5 .Изомеразы-реакции внутримолекулярного превращения

6. Липазы-рекции синтеза


Занятие N2 “Свойства ферментов,механизм их действия”

На этом занятии нужно более подробно дать учащимся понятия о субстратном и регуляторном центрах фермента,это важно для понимания механизма их действия.

Под субстратным центром понимают участок молекулы фермента,ответственный за присоединение вещества,подвергающегося ферментативному превращению.Из неорганической химии учащимся известно,что по окончании реакции катализаторывосстанавливают свою структуру и свойства.Зная это,можно подвести учащихся к выводу об образовании временных прмежуточных соединений между ферментами и субстратами.Так фермент соединяясь с субстратом,образует короткоживущий фермент-субстратный комлекс.В таком комплексе шансы на то,что реакция произойдет возрастают.По завершении реакции фермент-субстратный

комплекс распадается на продукт (или продукты) и фермент.Фермент в реакции не изменяется.

Понятие о работе ферментов будет неполным без раскрытия проблемы регуляции их действия.Поэтому следует отметить,что в молекулах ферментов,кроме активного и субстратного центров,есть регуляторный центр,который структурно соответствует конечному продукту определенного этапа обмена.Достигнув определенной критической концентрации,конечный продукт реакции взаимодействует с центром регуляции фермента и останавливает работу системы по принципу обратной связи:концентрация крнечного продукта служит сигналом выключения или запуска специфической химической реакции.Контроль и регуляция деятельности ферментов обусловлены их молекулярной структурой,которая способна “узнавать” определенные ыещества-сигналы и суммировать их действие.Важно познакомить учащихся и свойствами ферментов.

1 .Специфичность

Ферменты обладают очент высокой специфичностью.Эта специфичность обусловлена особой формой молекулы фермента,точно соответствующей форме молекулы субстрата.Эту гипотезу называют гипотезой “ключа и замка”:субстрат сравнивается в ней с ключом,который точно подходит к замку,т.е. к ферменту.Далее на основании этой гипотезы уже в 1959 году новую интерпретацию гипотезы “ключа и замка” предложил Кошланд.Он делает вывод о гибкости активных центров ферментов.Согласно этому предположению,субстрат соединяясь с ферментом,вызывает изменения в структуре последнего.Подходящей аналогией в этом случае может служить перчатка,которая при надевании на руку соответствующим образом изменяет свою форму.

Для подтверждения этого свойства ферментов можно показать опыт из биохимии.

Для этого берутся 4 пробирки:

1,2- по 2мл раствора крахмала

3.4-по 2мл раствора сахарозы

Затем в 1,3 -по 0.5мл раствора слюны

2,4-по 0.5мл 1% дрожжевой сахарозы

Перемешиваем,на 10 минут в водяную баню,охлаждаем,из пробирок

1,2 стеклянной палочкой берем капли и капли Y2 в KY,соединяем капли-синий цвет.

Из пробирок 3,4-берут по 3 мл,смешиваем с 1 мл 10% NaOH + несколько капель 1% CuSO4 - желтый или красный осадок(в зависимости от темпер. на амилазу слюны).


2 .Термолабильность

Температура важный показатель ферментативного действия.Для каждого фермента существует определенный температурный оптимум,обеспечивающий наибольшую активность.За пределами этого уровня скорость ферментативной реакции снижается.Для нагладности рекомендуется продемонстрировать следующий опыт:

Берутся 4 робирки по 2 мл 1% крахмала+0,05 мл разбавленной в 10 раз слюны,перемешивают и ставят в разные температурные условия.Ход гидролиза определяют по реакции с У2 (в КУ).Пробы берут через 2,4,6,8,10,12 минут.По изменению окраски крахмала с иодом судят о степени гидролиза крахмала в каждой пробирке.

Система самоконтроля учащихся .


Также в данной работе мы хотели бы предложить систему самоконтроля учащихся.Карточки самоконтроля представляют собой свод вопросов по теме,составляемые преподавателем.Вопросники раздаются школьникам на дом.Дома,в процессе подготовки учеников к занятиям,они ищут ответы на поставленные вопросы в учебных пособиях.Затем во время проведения фекультативного занятия учащимся раздаются карточки,содеожащие 2-3 вопроса,входящие в состав самоконтроля.Ответы письменные.Таким образом проверяются знания учащихся,степень осмысления ими метериала.

Самоконтроль может решать несколько задач:

1.концентрированние внимания школьника на ключевых вопросах темы

2.постановка проблемных вопросов

3.самоконтроль может содержать вопросы на повторение пройденного метериала и связь его с настоящим материалом,вопросы обощающего характера.

Примерные вопросы для самоконтроля:

1.Обмен веществ - сочетание и взаимосвязь процессов ассимиляции и диссимиляции.

2.Образование АТФ в клетке.АТФ- универсальное “топливо” клетки.

3.Локализация ферментов углеводного обмена.

4.Локализация ферментов биосинтеза белка.

5.Мультиферментативные системы,их локализация и функции.


Выводы.

1. Развитие общебиологических понятий,к числу которых можно отнести понятие “фермент”,является теоретической основой обучения как биологии,так и химии.

2 .Развитие понятия о ферментах способствует формированию у учащихся знаний,которые необходимы для расширения общего научного кругозора.

3.В связи с важностью формирования понятия “фермент”,а так же из-за недостатка времени,рекомендуетсяпроведение факультативных занятий.Несколько занятий разработаны нами.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

В клетке любого живого организма протекают миллионы химических реакций. Каждая из них имеет большое значение, поэтому важно поддерживать скорость биологических процессов на высоком уровне. Почти каждая реакция катализируется своим ферментом. Что такое ферменты? Какова их роль в клетке?

Ферменты. Определение

Термин "фермент" происходит от латинского fermentum - закваска. Также они могут называться энзимами от греческого en zyme - "в дрожжах".

Ферменты - биологически активные вещества, поэтому любая реакция, протекающая в клетке, не обходится без их участия. Эти вещества выполняют роль катализаторов. Соответственно, любой фермент обладает двумя основными свойствами:

1) Энзим ускоряет биохимическую реакцию, но при этом не расходуется.

2) Величина константы равновесия не меняется, а лишь ускоряется достижение этого значения.

Ферменты ускоряют биохимические реакции в тысячу, а в некоторых случаях в миллион раз. Это значит, что при отсутствии ферментативного аппарата все внутриклеточные процессы практически остановятся, а сама клетка погибнет. Поэтому роль ферментов как биологически активных веществ велика.

Разнообразие энзимов позволяет разносторонне регулировать метаболизм клетки. В любом каскаде реакций принимает участие множество ферментов различных классов. Биологические катализаторы обладают большой избирательностью благодаря определенной конформации молекулы. Т. к. энзимы в большинстве случаев имеют белковую природу, они находятся в третичной или четвертичной структуре. Объясняется это опять же специфичностью молекулы.

Функции энзимов в клетке

Главная задача фермента - ускорение соответствующей реакции. Любой каскад процессов, начиная с разложения пероксида водорода и заканчивая гликолизом, требует присутствия биологического катализатора.

Правильная работа ферментов достигается высокой специфичностью к определенному субстрату. Это значит, что катализатор может ускорять только определенную реакцию и никакую больше, даже очень похожую. По степени специфичности выделяют следующие группы энзимов:

1) Ферменты с абсолютной специфичностью, когда катализируется только одна-единственная реакция. Например, коллагеназа расщепляет коллаген, а мальтаза расщепляет мальтозу.

2) Ферменты с относительной специфичностью. Сюда входят такие вещества, которые могут катализировать определенный класс реакций, к примеру, гидролитическое расщепление.

Работа биокатализатора начинается с момента присоединения его активного центра к субстрату. При этом говорят о комплементарном взаимодействии наподобие замка и ключа. Здесь имеется в виду полное совпадение формы активного центра с субстратом, что дает возможность ускорять реакцию.

Следующий этап заключается в протекании самой реакции. Ее скорость возрастает благодаря действию ферментативного комплекса. В конечном итоге мы получаем энзим, который связан с продуктами реакции.

Заключительный этап - отсоединение продуктов реакции от фермента, после чего активный центр вновь становится свободным для очередной работы.

Схематично работу фермента на каждом этапе можно записать так:

1) S + E ——> SE

2) SE ——> SP

3) SP ——> S + P , где S - это субстрат, E - фермент, а P - продукт.

Классификация ферментов

В организме человека можно найти огромное количество ферментов. Все знания об их функциях и работе были систематизированы, и в итоге появилась единая классификация, благодаря которой можно легко определить, для чего предназначен тот или иной катализатор. Здесь представлены 6 основных классов энзимов, а также примеры некоторых подгрупп.

  1. Оксидоредуктазы.

Ферменты этого класса катализируют окислительно-восстановительные реакции. Всего выделяют 17 подгрупп. Оксидоредуктазы обычно имеют небелковую часть, представленную витамином или гемом.

Среди оксидоредуктаз часто встречаются следующие подгруппы:

а) Дегидрогеназы. Биохимия ферментов-дегидрогеназ заключается в отщеплении атомов водорода и переносе их на другой субстрат. Эта подгруппа чаще всего встречается в реакциях дыхания, фотосинтеза. В составе дегидрогеназ обязательно присутствует кофермент в виде НАД/НАДФ или флавопротеидов ФАД/ФМН. Нередко встречаются ионы металлов. Примерами могут служить такие энзимы, как цитохромредуктазы, пируватдегидрогеназа, изоцитратдегидрогеназа, а также многие ферменты печени (лактатдегидрогеназа, глутаматдегидрогеназа и т. д.).

б) Оксидазы. Ряд ферментов катализирует присоединение кислорода к водороду, в результате чего продуктами реакции могут быть вода или пероксид водорода (H 2 0, H 2 0 2). Примеры ферментов: цитохромоксидаза, тирозиназа.

в) Пероксидазы и каталазы - энзимы, катализирующие распад H 2 O 2 на кислород и воду.

г) Оксигеназы. Эти биокатализаторы ускоряют присоединение кислорода к субстрату. Дофамингидроксилаза - один из примеров таких энзимов.

2. Трансферазы.

Задача ферментов этой группы состоит в переносе радикалов от вещества-донора к веществу-реципиенту.

а) Метилтрансферазы. ДНК-метилтрансферазы - основные ферменты, контролирующие процесс репликации нуклеотидов играет большую роль в регуляции работы нуклеиновой кислоты.

б) Ацилтрансферазы. Энзимы этой подгруппы транспортируют ацильную группу с одной молекулы на другую. Примеры ацилтрансфераз: лецитинхолестеринацилтрансфераза (переносит функциональную группу с жирной кислоты на холестерин), лизофосфатидилхолинацилтрансфераза (ацильная группа переносится на лизофосфатидилхолин).

в) Аминотрансферазы - ферменты, которые участвуют в превращении аминокислот. Примеры ферментов: аланинаминотрансфераза, которая катализирует синтез аланина из пирувата и глутамата путем переноса аминогруппы.

г) Фосфотрансферазы. Ферменты этой подгруппы катализируют присоединение фосфатной группы. Другое название фосфотрансфераз, киназы, встречается намного чаще. Примерами могут служить такие энзимы, как гексокиназы и аспартаткиназы, которые присоединяют фосфорные остатки к гексозам (чаще всего к глюкозе) и к аспарагиновой кислоте соответственно.

3. Гидролазы - класс энзимов, которые катализируют расщепление связей в молекуле с последующим присоединением воды. Вещества, которые относятся к этой группе, - основные ферменты пищеварения.

а) Эстеразы - разрывают эфирные связи. Пример - липазы, которые расщепляют жиры.

б) Гликозидазы. Биохимия ферментов этого ряда заключается в разрушении гликозидных связей полимеров (полисахаридов и олигосахаридов). Примеры: амилаза, сахараза, мальтаза.

в) Пептидазы - энзимы, катализирующие разрушение белков до аминокислот. К пептидазам относятся такие ферменты, как пепсины, трипсин, химотрипсин, карбоиксипептидаза.

г) Амидазы - расщепляют амидные связи. Примеры: аргиназа, уреаза, глутаминаза и т. д. Многие ферменты-амидазы встречаются в

4. Лиазы - ферменты, по функции схожие с гидролазами, однако при расщеплении связей в молекулах не затрачивается вода. Энзимы этого класса всегда имеют в составе небелковую часть, например, в виде витаминов В1 или В6.

а) Декарбоксилазы. Эти ферменты действуют на С-С связь. Примерами могут служить глутаматдекарбоксилаза или пируватдекарбоксилаза.

б) Гидратазы и дегидратазы - ферменты, которые катализируют реакцию расщепления связей С-О.

в) Амидин-лиазы - разрушают С-N связи. Пример: аргининсукцинатлиаза.

г) Р-О лиазы. Такие ферменты, как правило, отщепляют фосфатную группу от вещества-субстрата. Пример: аденилатциклаза.

Биохимия ферментов основана на их строении

Способности каждого энзима определяются индивидуальным, только ему свойственным строением. Любой фермент - это, прежде всего, белок, и его структура и степень сворачивания играют решающую роль в определении его функции.

Для каждого биокатализатора характерно наличие активного центра, который, в свою очередь, делится на несколько самостоятельных функциональных областей:

1) Каталитический центр - это специальная область белка, по которой происходит присоединение фермента к субстрату. В зависимости от конформации белковой молекулы каталитический центр может принимать разнообразную форму, которая должна соответствовать субстрату так же, как замок ключу. Такая сложная структура объясняет то, что находится в третичном или четвертичном состоянии.

2) Адсорбционный центр - выполняет роль «держателя». Здесь в первую очередь происходит связь между молекулой фермента и молекулой-субстратом. Однако связи, которые образует адсорбционный центр, очень слабые, а значит, каталитическая реакция на этом этапе обратима.

3) Аллостерические центры могут располагаться как в активном центре, так и по всей поверхности фермента в целом. Их функция - регулирование работы энзима. Регулирование происходит с помощью молекул-ингибиторов и молекул-активаторов.

Активаторные белки, связываясь с молекулой фермента, ускоряют его работу. Ингибиторы же, напротив, затормаживают каталитическую активность, причем это может происходить двумя способами: либо молекула связывается с аллостерическим центром в области активного центра фермента (конкурентное ингибирование), либо она присоединяется к другой области белка (неконкурентное ингибирование). считается более действенным. Ведь при этом закрывается место для связывания субстрата с ферментом, причем этот процесс возможен только в случае практически полного совпадения формы молекулы ингибитора и активного центра.

Энзим зачастую состоит не только из аминокислот, но и из других органических и неорганических веществ. Соответственно, выделяют апофермент - белковую часть, кофермент - органическую часть, и кофактор - неорганическую часть. Кофермент может быть представлен улгеводами, жирами, нуклеиновыми кислотами, витаминами. В свою очередь, кофактор - это чаще всего вспомогательные ионы металлов. Активность ферментов определяется его строением: дополнительные вещества, входящие в состав, меняют каталитические свойства. Разнообразные виды ферментов - это результат комбинирования всех перечисленных факторов образования комплекса.

Регуляция работы ферментов

Энзимы как биологически активные вещества не всегда необходимы организму. Биохимия ферментов такова, что они могут в случае чрезмерного катализа навредить живой клетке. Для предотвращения пагубного влияния энзимов на организм необходимо каким-то образом регулировать их работу.

Т. к. ферменты имеют белковую природу, они легко разрушаются при высоких температурах. Процесс денатурации обратим, однако он может существенно повлиять на работу веществ.

pH также играет большую роль в регуляции. Наибольшая активность ферментов, как правило, наблюдается при нейтральных значениях pH (7,0-7,2). Также есть энзимы, которые работают только в кислой среде или только в щелочной. Так, в клеточных лизосомах поддерживается низкий pH, при котором активность гидролитических ферментов максимальна. В случае их случайного попадания в цитоплазму, где среда уже ближе к нейтральной, их активность снизится. Такая защита от «самопоедания» основана на особенностях работы гидролаз.

Стоит упомянуть о значении кофермента и кофактора в составе ферментов. Наличие витаминов или ионов металла существенно влияет на функционирование некоторых специфических энзимов.

Номенклатура ферментов

Все ферменты организма принято называть в зависимости от их принадлежности к какому-либо из классов, а также по субстрату, с которым они вступают в реакцию. Иногда по используют в названии не один, а два субстрата.

Примеры названия некоторых энзимов:

  1. Ферменты печени: лактат-дегидроген-аза, глутамат-дегидроген-аза.
  2. Полное систематическое название фермента: лактат-НАД+-оксидоредукт-аза.

Сохранились и тривиальные названия, которые не придерживаются правил номенклатуры. Примерами являются пищеварительные ферменты: трипсин, химотрипсин, пепсин.

Процесс синтеза ферментов

Функции ферментов определяются еще на генетическом уровне. Т. к. молекула по большому счету - белок, то и ее синтез в точности повторяет процессы транскрипции и трансляции.

Синтез ферментов происходит по следующей схеме. Вначале с ДНК считывается информация о нужном энзиме, в результате чего образуется мРНК. Матричная РНК кодирует все аминокислоты, которые входят в состав энзима. Регуляция ферментов может происходить и на уровне ДНК: если продукта катализируемой реакции достаточно, транскрипция гена прекращается и наоборот, если возникла потребность в продукте, активизируется процесс транскрипции.

После того как мРНК вышла в цитоплазму клетки, начинается следующий этап - трансляция. На рибосомах эндоплазматической сети синтезируется первичная цепочка, состоящая из аминокислот, соединенных пептидными связями. Однако молекула белка в первичной структуре еще не может выполнять свои ферментативные функции.

Активность ферментов зависит от структуры белка. На той же ЭПС происходит скручивание протеина, в результате чего образуются сначала вторичная, а потом третичная структуры. Синтез некоторых ферментов останавливается уже на этом этапе, однако для активизации каталитической активности зачастую необходимо присоединение кофермента и кофактора.

В определенных областях эндоплазматической сети происходит присоединение органических составляющих энзима: моносахаридов, нуклеиновых кислот, жиров, витаминов. Некоторые ферменты не могут работать без наличия кофермента.

Кофактор играет решающую роль в образовании Некоторые функции ферментов доступны только при достижении белком доменной организации. Поэтому для них очень важно наличие четвертичной структуры, в которой соединяющим звеном между несколькими глобулами белка является ион металла.

Множественные формы ферментов

Встречаются ситуации, когда необходимо наличие нескольких энзимов, катализирующих одну и ту же реакцию, но отличающихся друг от друга по каким-либо параметрам. Например, фермент может работать при 20 градусах, однако при 0 градусов он уже не сможет выполнять свои функции. Что делать в подобной ситуации живому организму при низких температурах среды?

Эта проблема легко решается наличием сразу нескольких ферментов, катализирующих одну и ту же реакцию, но работающих в разных условиях. Существуют два типа множественных форм энзимов:

  1. Изоферменты. Такие белки кодируются разными генами, состоят из разных аминокислот, однако катализируют одну и ту же реакцию.
  2. Истинные множественные формы. Эти белки транскрибируются с одного и того же гена, однако на рибосомах происходит модификация пептидов. На выходе получают несколько форм одного и того же фермента.

В результате первый тип множественных форм сформирован на генетическом уровне, когда второй - на посттрансляционном.

Значение ферментов

В медицине сводится к выпуску новых лекарственных средств, в составе которых вещества уже находятся в нужных количествах. Ученые еще не нашли способ стимулирования синтеза недостающих энзимов в организме, однако сегодня широко распространены препараты, которые могут на время восполнить их недостаток.

Различные ферменты в клетке катализируют большое количество реакций, связанных с поддержанием жизнедеятельности. Одними из таких энизмов являются представители группы нуклеаз: эндонуклеазы и экзонуклеазы. Их работа заключается в поддержании постоянного уровня нуклеиновых кислот в клетке, удалении поврежденных ДНК и РНК.

Не стоит забывать о таком явлении, как свертывание крови. Являясь эффективной мерой защиты, данный процесс находится под контролем ряда ферментов. Главным из них является тромбин, который переводит неактивный белок фибриноген в активный фибрин. Его нити создают своеобразную сеть, которая закупоривает место повреждения сосуда, тем самым препятствуя излишней кровопотере.

Ферменты используются в виноделии, пивоварении, получении многих кисломолочных продуктов. Для получения спирта из глюкозы могут использоваться дрожжи, однако для удачного протекания этого процесса достаточно и экстракта из них.

Интересные факты, о которых вы не знали

Все ферменты организма имеют огромную массу - от 5000 до 1000000 Да. Это связано с наличием белка в составе молекулы. Для сравнения: молекулярная масса глюкозы - 180 Да, а углекислого газа - всего 44 Да.

На сегодняшний день открыто более чем 2000 ферментов, которые были обнаружены в клетках различных организмов. Однако большинство из этих веществ до конца еще не изучено.

Активность ферментов используется для получения эффективных стиральных порошков. Здесь энзимы выполняют ту же роль, что и в организме: они разрушают органические вещества, и это свойство помогает в борьбе с пятнами. Рекомендуется использовать подобный стиральный порошок при температуре не выше 50 градусов, иначе может пойти процесс денатурации.

По статистике, 20% людей по всему миру страдает от недостатка какого-либо из ферментов.

О свойствах энзимов знали очень давно, однако только в 1897 году люди поняли, что для сбраживания сахара в спирт можно использовать не сами дрожжи, а экстракт из их клеток.

© 2024 bugulma-lada.ru -- Портал для владельцев автомобилей