Авиамодельный пульсирующий реактивный двигатель. Пульсирующий детонационный двигатель. Китайский дизайн, российская сборка

Главная / Ремонт и уход

ИМПУЛЬСНЫЙ РЕАКТИВНЫЙ ДВИГАТЕЛЬ. Предлагаю на суд читателей журнала "САМИЗДАТ" еще один возможный двигатель для космических аппаратов, успешно похороненный ВНИИГПЭ в конце 1980 года. Речь идёт о заявке N 2867253/06 на "СПОСОБ ПОЛУЧЕНИЯ ИМПУЛЬСНОЙ РЕАКТИВНОЙ ТЯГИ ПРИ ПОМОЩИ УДАРНЫХ ВОЛН". Изобретатели разных стран предлагали целый ряд способов для создания реактивных двигателей с импульсной реактивной тягой. В камерах сгорания и у буферных плит этих двигателей детонационно предлагалось сжигать разные виды топлива, вплоть до взрывов атомных бомб. Моё предложение позволяло создать, своего рода двигатель внутреннего сгорания с максимально возможным использованием кинетической энергии рабочего тела. Конечно, выхлопные газы предлагаемого двигателя мало походили бы на выхлоп автомобильного мотора. Не походили бы они и на мощные струи пламени, бьющие из сопел современных ракет. Чтобы читатель мог получить представление о предложенном мной способе получения импульсной реактивной тяги, и о отчаянной борьбе автора за своё, так и не рождённое детище, ниже приводится почти дословное описание и формула заявки, (но, увы, без чертежей), а также одно из возражений заявителя на очередное отказное решение ВНИИГПЭ. Мною даже это краткое описание, несмотря на то, что прошло уже около 30 лет, воспринимается, как детектив, в котором убийца-ВНИИГПЭ хладнокровно расправляется с еще не рождённым ребёнком.

СПОСОБ ПОЛУЧЕНИЯ ИМПУЛЬСНОЙ РЕАКИВНОЙ ТЯГИ

ПРИ ПОМОЩИ УДАРНЫХ ВОЛН. Изобретение относится к области реактивного двигателестроения и может быть использовано в космической, ракетной и авиационной технике. Известен способ получения постоянной или пульсирующей реактивной тяги путём преобразование различных видов энергии в кинетическую энергию движения непрерывной или пульсирующей струи рабочего тела, которое выбрасывают в окружающую среду в направлении противоположном направлению получаемой реактивной тяги. Для этого широко применяют химические источники энергии, одновременно являющиеся и рабочим телом. В этом случае преобразование источника энергии в кинетическую энергию движения непрерывной или пульсирующей струи рабочего тела в одной или нескольких камерах сгорания с критическим (уменьшенным) выходным отверстием, переходящим в расширяющееся коническое или профилированное сопло (смотри, например, В.Е. Алемасов: "Теория ракетных двигателей", стр. 32; М.В. Добровольский: "Жидкостные ракетные двигатели", стр. 5; В. Ф. Разумеев, Б. К. Ковалёв: "Основы проектирования ракет на твёрдом топливе", стр. 13). Наиболее распространённой характеристикой, отражающей экономичность получения реактивной тяги, служит удельная тяга, которую получают отношением тяги к секундному расходу топлива (смотри, например, В.Е. Алемасов: "Теория ракетных двигателей", стр. 40). Чем выше удельная тяга, тем меньше требуется топлива для получения одной и той же тяги. В реактивных двигателях, использующих известный способ получения реактивной тяги с применением жидких топлив, данная величина достигает значения более 3000 нхсек/кг, а с применением твёрдых топлив -- не превышает 2800 нхсек/кг (смотри М. В. Добровольский: "Жидкостные ракетные двигатели, стр.257; В. Ф. Разумеев, Б.К. Ковалёв: "Основы проектирования баллистических ракет на твёрдом топливе", стр. 55, таблица 33). Существующий способ получения реактивной тяги неэкономичен. Стартовая масса современных ракет, как космических, так и баллистических на 90% и более состоит из массы топлива. Поэтому любые способы получения реактивной тяги, увеличивающие удельную тягу, заслуживают внимания. Известен способ получения импульсной реактивной тяги при помощи ударных волн путём последовательных взрывов непосредственно в камере сгорания или около специальной буферной плиты. Способ с применением буферной плиты реализован, например, в США в экспериментальном устройстве, которое летало за счёт энергии ударных волн, получаемых при последовательных взрывах зарядов тринитротолуола. Устройство было разработано для экспериментальной проверки проекта "Орион". Указанный выше способ получения импульсной реактивной тяги не получил распространения, так как он оказался не экономичным. Усреднённая удельная тяга, согласно литературному источнику, не превышала 1100 нхсек/кг. Это объясняется тем, что более половина энергии взрывчатого вещества в данном случае сразу уходит вместе с ударными волнами, не участвуя в получении импульсной реактивной тяги. Кроме того, значительная часть энергии ударных волн, бьющих по буферной плите, тратилась на разрушение и на испарение аблирующего покрытия, пары которого предполагалось использовать в качестве дополнительного рабочего тела. К тому же буферная плита значительно уступает камерам сгорания с критическим сечением и с расширяющимся соплом. В случае создания ударных волн непосредственно в таких камерах, образуется пульсирующая тяга, принцип получения которой не отличается от принципа получения известной постоянной реактивной тяги. Кроме того, прямое воздействие ударных волн на стенки камеры сгорания или на буферную плиту требует их чрезмерного усиления и специальной защиты. (Смотри "Знание" N 6, 1976 год, стр. 49, серия космонавтика и астрономия). Целью данного изобретения является устранение указанных недостатков путём более полного использования энергии ударных волн и значительного уменьшения ударных нагрузок на стенки камеры сгорания. Поставленная цель достигается тем, что преобразование источника энергии и рабочего тела в последовательные ударные волны происходит в небольших детонационных камерах. Затем ударные волны продуктов горения тангенциально подаются в вихревую камеру вблизи от торцевой (передней) стенки и закручиваются с большой скоростью внутренней цилиндрической стенкой относительно оси этой камеры. Возникающие при этом колоссальные центробежные силы, усиливают сжатие ударной волны продуктов горения. Суммарное давление этих мощных сил передаётся и на торцевую (переднюю) стенку вихревой камеры. Под воздействием этого суммарного давления ударная волна продуктов горения разворачивается и по винтовой линии, с увеличивающимся шагом, устремляется в сторону сопла. Всё это повторяется при вводе в вихревую камеру каждой очередной ударной волны. Так образуется основная составляющая импульсной тяги. Для еще большего увеличения суммарного давления, образующего основную составляющую импульсной тяги, тангенциальный ввод ударной волны в вихревую камеру вводят под некоторым углом к её торцевой (передней) стенке. С целью получения дополнительной составляющей импульсной тяги в профилированном сопле также используют давление ударной волны продуктов сгорания, усиленное центробежными силами раскрутки. С целью более полного использования кинетической энергии раскрутки ударных волн, а также для устранения крутящего момента вихревой камеры относительно её оси, появляющегося в результате тангенциальной подачи, раскрученные ударные волны продуктов горения перед выходом из сопла подают на профилированные лопатки, которые направляют их по прямой линии вдоль оси вихревой камеры и сопла. Предлагаемый способ получения импульсной реактивной тяги при помощи закрученных ударных волн и центробежных сил раскрутки был проверен в предварительных экспериментах. В качестве рабочего тела в этих экспериментах служили ударные волны пороховых газов, получаемых при детонации 5 -- 6 г дымного промыслового пороха N 3. Порох помещался в трубке, заглушенной с одного конца. Внутренний диаметр трубки был 13 мм. Своим открытым концом она ввёртывалась в тангенциальное резьбовое отверстие в цилиндрической стенке вихревой камеры. Внутренняя полость вихревой камеры имела диаметр 60 мм и высоту 40 мм. На открытый торец вихревой камеры поочерёдно насаживались сменные сопловые насадки: коническая сужающаяся, коническая расширяющаяся и цилиндрическая с внутренним диаметром равным внутреннему диаметру вихревой камеры. Сопловые насадки были без профилированных лопаток на выходе. Вихревая камера, с одной из перечисленных выше сопловых насадок, устанавливалась на специальном динамометре сопловой насадкой вверх. Пределы измерения динамометра от 2 до 200 кг. Так как реактивный импульс был очень краток (около 0,001 сек), то фиксировался не сам реактивный импульс, а сила толчка от получившей движение суммарной массы вихревой камеры, сопловой насадки и подвижной части конструкции самого динамометра. Эта суммарная масса составляла около 5 кг. В зарядную трубку, выполнявшую в нашем эксперименте роль детонационной камеры, набивалось около 27 г пороха. После поджигания пороха с открытого конца трубки (со стороны внутренней полости вихревой камеры) сначала происходил равномерный спокойный процесс горения. Пороховые газы, тангенциально поступая во внутреннюю полость вихревой камеры, закручивались в ней и, вращаясь, со свистом выходили вверх через сопловую насадку. В этот момент динамометр не фиксировал никаких толчков, но пороховые газы, вращаясь с большой скоростью, воздействием центробежных сил давили на внутреннюю цилиндрическую стенку вихревой камеры и перекрывали себе вход в неё. В трубке, где продолжался процесс горения, возникали стоячие волны давления. Когда пороха в трубке оставалось не более 0,2 от первоначального количества, то есть 5 --6 г, происходила его детонация. Возникающая при этом ударная волна, через тангенциальное отверстие, преодолевая центробежное давление первичных пороховых газов, врывалась во внутреннюю полость вихревой камеры, закручивалась в ней, отражалась от передней стенки и, продолжая вращаться, по винтовой траектории с увеличивающимся шагом устремлялась в сопловую насадку, откуда вылетала наружу с резким и сильным звуком, подобным пушечному выстрелу. В момент отражения ударной волны от передней стенки вихревой камеры пружина динамометра фиксировала толчок, наибольшая величина которого (50 --60 кг) была при применении сопловой насадки с расширяющимся конусом. При контрольных сжиганиях 27 г пороха в зарядной трубке без вихревой камеры, а также в вихревой камере без зарядной трубки (тангенциальное отверстие заглушалось) с цилиндрической и с конической расширяющейся сопловой насадкой, ударная волна не возникала, так как в этот момент постоянная реактивная тяга была меньше предела чувствительности динамометра, и он её не фиксировал. При сжигании этого же количества пороха в вихревой камере с конической сужающейся сопловой насадкой (сужение 4: 1) фиксировалась постоянная реактивная тяга 8 --10 кг. Предлагаемый способ получения импульсной реактивной тяги, даже в описанном выше предварительном эксперименте, (с неэффективным промысловым порохом в качестве топлива, без профилированного сопла и без направляющих лопаток на выходе) позволяет получить усреднённую удельную тягу около 3300 нхсек/кг, что превышает значение данного параметра у лучших ракетных двигателей, работающих на жидком топливе. При сравнении же с приведённым прототипом предлагаемый способ позволяет также значительно уменьшить вес камеры сгорания и сопла, а, следовательно, и вес всего реактивного двигателя. Для полного и более точного выявления всех преимуществ предлагаемого способа получения импульсной реактивной тяги необходимо уточнение оптимальных соотношений между размерами камер детонации и вихревой камеры, необходимо уточнение оптимального угла между направлением тангенциальной подачи и передней стенкой вихревой камеры и т. д., то есть, необходимы дальнейшие эксперименты с выделением соответствующих средств и с привлечением разных специалистов. ФОРМУЛА ИЗОБРЕТЕНИЯ. 1. Способ получения импульсной реактивной тяги при помощи ударных волн, включающий применение вихревой камеры с расширяющимся профилированным соплом, преобразование источника энергии в кинетическую энергию движения рабочего тела, тангенциальную подачу рабочего тела в вихревую камеру, выброс рабочего тела в окружающую среду в направлении обратном направлению получаемой реактивной тяги, отличающийся тем, что с целью более полного использования энергии ударных волн, преобразование источника энергии и рабочего тела в последовательные ударные волны производят в одной или нескольких детонационных камерах, затем ударные волны посредством тангенциальной подачи закручивают в вихревой камере относительно её оси, отражают в закрученном виде от передней стенки и образуют тем самым импульсный перепад давления между передней стенкой камеры и соплом, который создаёт основную составляющую импульсной реактивной тяги в предлагаемом способе и направляет ударные волны по винтовой траектории с увеличивающимся шагом в сторону сопла. 2. Способ получения импульсной реактивной тяги при помощи ударных волн по п. 1 отличающийся тем, что с целью увеличения импульсного перепада давления между передней стенкой вихревой камеры и соплом, тангенциальную подачу ударных волн производят под некоторым углом в сторону передней стенки. 3. Способ получения импульсной реактивной тяги при помощи ударных волн по п. 1 отличающийся тем, что для получения дополнительной импульсной реактивной тяги, в вихревой камере и в расширяющемся профилированном сопле используют давление центробежных сил, возникающих от раскрутки ударных волн. 4. Способ получения импульсной реактивной тяги при помощи ударных волн по п. 1 отличающийся тем, что с целью полного использования кинетической энергии раскрутки ударных волн для получения дополнительной импульсной реактивной тяги, а также устранения крутящего момента вихревой камеры относительно её оси, возникающего при тангенциальной подаче, раскрученные ударные волны перед выходом из сопла подают на профилированные лопатки, которые направляют их по прямой линии вдоль общей оси вихревой камеры и сопла. В государственный комитет СССР по делам изобретений и открытий, ВНИИГПЭ. ВОЗРАЖЕНИЕ НА ОТКАЗНОЕ РЕШЕНИЕ ОТ 16.10.80 ПО ЗАЯВКЕ N 2867253/06 НА "СПОСОБ ПОЛУЧЕНИЯ ИМПУЛЬСНОЙ РЕАКТИВНОЙ ТЯГИ ПРИ ПОМОЩИ УДАРНЫХ ВОЛН". Изучив отказное решение от 16.10.80, заявитель пришёл к выводу, что экспертиза мотивирует свой отказ о выдаче авторского свидетельства на предлагаемый способ получения реактивной тяги отсутствием новизны (противопоставляется патент Великобритании N 296108, кл. F 11,1972), отсутствием расчёта тяги, отсутствием положительного эффекта по сравнению с известным способом получения реактивной тяги из-за возрастание потерь на трение при развороте рабочего тела и из-за снижения энергетических характеристик двигателя в результате применения твёрдого топлива. На вышеизложенное заявитель считает необходимым ответить следующее: 1. На отсутствие новизны экспертиза ссылается впервые и противоречит сама себе, так как в этом же отказном решении отмечается, что предложенный способ отличается от известных тем, что ударные волны закручиваются вдоль оси вихревой камеры.... На абсолютную же новизну заявитель и не претендует, что доказывается приведённым в заявке прототипом. (Смотри второй лист заявки). В противопоставленном британском патенте N 296108, кл. F 11, 1972, судя по приведённым данным самой экспертизы, продукты горения выбрасываются из камеры сгорания через сопло по прямому каналу, то есть закрутка ударных волн отсутствует. Следовательно, в указанном британском патенте способ получения реактивной тяги в принципе ничем не отличается от известного способа получения постоянной тяги и не может противопоставляться предлагаемому способу. 2. Экспертиза утверждает, что величину тяги в предлагаемом способе можно рассчитывать и ссылается при этом на книгу Г. Н. Абрамовича "Прикладная газовая динамика", Москва, Наука, 1969, стр. 109 -- 136. В указанном разделе прикладной газовой динамики даются методы расчёта прямых и косых скачков уплотнения во фронте ударной волны. Прямыми скачки уплотнения называются, если их фронт составляет прямой угол с направлением распространения. Если же фронт скачка уплотнения располагается под некоторым углом "а" к направлению распространения, то такие скачки называются косыми. Пересекая фронт косого скачка уплотнения, газовый поток меняет своё направление на некоторый угол "w". Величины углов "а" и "w" зависят в основном от числа Маха "М" и от формы обтекаемого тела (например, от величины угла клиновидного крыла самолёта), то есть "a" и "w" в каждом конкретном случае являются величинами постоянными. В предлагаемом способе получения реактивной тяги скачки уплотнения во фронте ударной волны, особенно в начальный период её пребывания в вихревой камере, когда воздействием на переднюю стенку создаётся импульс реактивной силы, являются переменными косыми скачками. То есть фронт ударной волны и газовые потоки в момент создания реактивного импульса тяги непрерывно меняют свои углы "a" и "w" по отношению и к цилиндрической, и к передней стенкам вихревой камеры. Кроме того, картина усложняется наличием мощных центробежных сил давления, которые в начальный момент воздействуют и на цилиндрическую, и на переднюю стенки. Следовательно, указанный экспертизой метод расчёта не годится для расчёта сил импульсной реактивной тяги в предлагаемом способе. Не исключено, что метод расчёта скачков уплотнения, приведённый в прикладной газовой динамике Г. Н. Абрамовича, послужит отправной базой для создания теории расчёта импульсных сил в предлагаемом способе, но, согласно положению об изобретениях, в обязанности заявителя разработка подобных теорий пока еще не входит, как не входит в обязанности заявителя и постройка действующего двигателя. 3. Утверждая о сравнительной неэффективности предлагаемого способа получения реактивной тяги, экспертиза игнорирует результаты, полученные заявителем в его предварительных экспериментах, а ведь данные результаты были получены с таким неэффективным топливом, как промысловый порох (смотри пятый лист заявки). Говоря о больших потерях на трение и на разворот рабочего тела экспертиза упускает из виду, что основная составляющая импульсной реактивной тяги в предлагаемом способе возникает почти сразу в тот момент, когда ударная волна врывается в вихревую камеру, потому что входное тангенциальное отверстие расположено около её передней стенки (смотри в заявке фиг. 2), то есть в этот момент время движения и путь скачков уплотнения сравнительно невелики. Следовательно, и потери на трение в предлагаемом способе не могут быть большими. Говоря же о потерях на разворот, экспертиза упускает из виду, что именно при развороте ударной волны, как относительно цилиндрической стенки, так и относительно передней стенки в направлении оси вихревой камеры появляются мощные центробежные силы, которые, суммируясь с давлением в скачках уплотнения, и создают тягу в предлагаемом способе. 4. Необходимо также отметить, что ни в формуле заявки, ни в её описании заявитель не ограничивает получение импульсной реактивной тяги только за счёт твёрдых топлив. Твёрдое топливо (порох) заявитель использовал только при проведении своих предварительных экспериментов. На основании всего вышеизложенного заявитель просит ВНИИГПЭ еще раз пересмотреть своё решение и направить материалы заявки на заключение в соответствующую организацию с предложение провести проверочные эксперименты и только после этого решать, принимать или отклонять предложенный способ получения импульсной реактивной тяги. ВНИМАНИЕ! Автор всем желающим за отдельную плату вышлет по электронной почте фотографии испытаний, описанной выше, экспериментальной установки импульсного реактивного двигателя. Заказ следует сделать по адресу: e-mail: [email protected]. При этом не забудьте сообщить свой электронный адрес. Фотографии будут высланы на ваш электронный адрес сразу, как только вы почтовым переводом вышлите 100 рублей Матвееву Николаю Ивановичу на Рыбинское отделение Сбербанка России N 1576, Сбербанка России АО N 1576/090, на лицевой счёт N 42306810477191417033/34. МАТВЕЕВ, 19.11.80

Изобретение относится к области двигателестроения и может быть использовано для создания тяги на летательных аппаратах. Пульсирующий детонационный двигатель содержит корпус, средства для подачи горючего и окислителя в реактор, кольцевое сопло и газодинамический резонатор, причем резонатор в виде трубы меньшего диаметра размещен в трубе реактора так, чтобы выход кольцевого сопла Гартмана был направлен во внутреннюю полость резонатора, вогнутое дно резонатора изготовлено из двух частей, разделенных буфером, внутренняя часть выполнена из материала, выдерживающего высокие импульсные механические нагрузки, а наружная - из блока пьезоэлектрических элементов, соединенных электрически параллельно, являющихся совместно с резонансным контуром пьезогенератором. Изобретение позволяет повысить эффективность преобразования химической энергии топлива в механическую и электрическую энергию двигателя, обеспечить упрощение конструкции, улучшение массогабаритных и эксплуатационных параметров, повышение удельных тяговых характеристик пульсирующего детонационного двигателя. 4 з.п. ф-лы, 3 ил.

Рисунки к патенту РФ 2435059

Изобретение относится к области двигателестроения и может быть использовано для создания тяги на летательных аппаратах.

Создание детонационного двигателя является новым направлением в развитии авиадвигателестроения. По сравнению с существующими авиационными газотурбинными двигателями пульсирующие детонационные двигатели обеспечат существенное улучшение тягово-экономических и массово-габаритных показателей, упрощение конструкции и снижение их стоимости (Вестник воздушного флота, июль-август 2003, стр.72-76). Теоретически и экспериментально доказано, что такие двигатели могут обеспечить повышение термического КПД в 1,3 1,5 раза.

Построение пульсирующих детонационных двигателей осуществляется по следующим схемам (Импульсные детонационные двигатели/ Под ред. С.М.Фролова, М.: ТОРУС ПРЕСС, 2006):

Классическая «Оружейная»;

Схема для прямоточного воздушно-реактивного двигателя;

Схема сжигания смеси с помощью стационарно вращающейся детонационной волны.

Кроме того, активно развивается «инвертированная» схема (ж. Двигатель, 2003, № 1 (25), стр.14-17; ж. Полет, 2006, № 11, стр.7-15, 2007, № 5, стр.22-30, 2008, № 12, стр.18-26).

Пульсирующий детонационный двигатель, построенный по «оружейной» схеме (патент США № 6484492), представляет собой прямолинейную трубу определенной длины, которая открыта с заднего конца и имеет клапанное устройство на переднем конце. При работе двигателя топливно-воздушная смесь подается в трубу через клапан, который затем закрывается.

Детонация топливно-воздушной смеси инициируется с помощью зажигателя, расположенного в трубе, а ударные волны, возникающие в результате детонации, распространяются «вниз» по трубе, повышая температуру и давление образующихся продуктов сгорания. Эти продукты вытесняются из открытого заднего конца, создавая импульс реактивной силы, направленный вперед. После выхода ударной волны возникает волна разрежения, которая обеспечивает подачу в трубу через клапан новой порции топливно-воздушной смеси, и цикл повторяется.

Способ управления детонацией в таком двигателе описан в патенте США № 6751943. Возникающая при воспламенении ударная волна и фронт детонационного горения будут стремиться распространяться в обоих продольных направлениях. Воспламенение инициируется на переднем конце трубы, так что волны будут распространяться по потоку к открытому выходному концу. Клапан необходим для того, чтобы препятствовать выходу ударной волны из передней стороны трубы и, что более важно, чтобы воспрепятствовать прохождению фронта детонационного горения в систему топливно-воздушного впуска. Для цикла пульсирующей детонации требуется, чтобы клапан работал при чрезвычайно высоких температурах и давлениях, и кроме того, он должен работать при очень больших частотах, чтобы получить сглаженную по величине силу тяги. Эти условия значительно уменьшают надежность механических клапанных систем из-за многоцикловой усталости.

Для пульсирующего детонационного двигателя, построенного по «оружейной» схеме, варианты управления «электрическим» клапаном предложены в патенте РФ № 2287713.

Такой двигатель включает трубу, имеющую открытый передний конец и открытый задний конец; топливно-воздушный вход, выполненный в трубе на переднем конце; зажигатель, расположенный в трубе в месте, находящемся между переднем концом и задним концом, а также систему магнитогидродинамического управления потоком, расположенную между зажигателем и топливно-воздушным входом. Предложено три варианта магнитогидродинамического управления потоком.

Первый вариант системы магнитогидродинамического управления потоком включает обмотку возбуждения электрического поля, намотанную вокруг трубы в месте, находящемся между зажигателем и топливно-воздушным входом, и пару постоянных магнитов, расположенных с противоположных сторон трубы для создания в ней магнитного поля, перпендикулярного продольной оси трубы. Детонация топливно-воздушной смеси в трубе будет приводить к протеканию через магнитное поле электрически проводящих ионизированных продуктов горения, в результате возникает электрический ток в обмотке возбуждения, создающий электрическое поле.

Взаимодействие магнитного и электрического полей приводит к возникновению силы Лоренца, направленной против движения ударной и детонационной волн. На время ее действия прямой фронт горения будет рассеиваться и не пройдет через открытый передний конец трубы. Кроме того, обмотка возбуждения электрического поля подключена к системе управления режимом мощности, обеспечивающей подачу в соответствующие моменты времени импульсов тока на зажигатель.

Второй вариант системы магнитогидродинамического управления потоком включает обмотку возбуждения магнитного поля, намотанную вокруг трубы в месте, находящемся между зажигателем и топливно-воздушным входом. К обмотке через устройство управления подключается источник энергии, обеспечивающий протекание через нее электрического тока и тем самым создание магнитного поля. В районе обмотки находящаяся на входе трубы ионизированная топливно-воздушная смесь под действием магнитного поля разделяется на зону, обогащенную топливом, окруженную обедненной воздушной зоной. При детонации прямая волна давления и прямой фронт горения, распространяясь к входу трубы, сталкиваются с разделенными топливной и воздушной зонами. В результате процесс горения передней зоны детонации нарушается, вызывая рассеивание прямого фронта горения. Как только прямой фронт пламени рассеется, подача электропитания на обмотку прекращается.

Третий вариант системы магнитогидродинамического управления потоком объединяет первый и второй варианты, обеспечивающие отбор энергии и разделения топливно-воздушной смеси. Он содержит расположенные друг за другом обмотку возбуждения магнитного поля и обмотку возбуждения электрического поля, намотанные снаружи трубы на участке между зажигателем и топливно-воздушным входом, пару постоянных магнитов, расположенных с противоположных сторон трубы возле обмотки возбуждения электрического поля, для создания в ней магнитного поля, перпендикулярного продольной оси трубы.

Предложенные варианты магнитогидродинамического управления потоком заменяют механический клапан «электрическим», обеспечивая предотвращение выхода фронта детонационного горения в систему топливно-воздушного впуска. Однако при этом детонационный двигатель существенно усложняется, увеличиваются его массогабаритные характеристики.

Известен способ и устройство получения тяги (патент РФ 2215890). Двигатель на основе данного способа состоит из блока подачи горючего и окислителя, корпуса, размещенной в корпусе с образованием кольцевого канала камеры сгорания, зон резонансной активации горючего и окислителя, в которых помещены средства активации в виде искровых разрядников, соединенных с выходами блока управления. К входу блока управления подключен выход блока питания. На выходе камеры сгорания помещен отражатель и оптически связанный с ним центрально расположенный профильный экран, выполненный с вогнутой поверхностью для фокусировки отраженной детонационной волны. Отражатель и экран изготовлены из материала с высокой магнитной проницаемостью, они могут перемещаться относительно друг друга и предназначены для снятия с их поверхности электрической энергии при ударном взаимодействии по ним ионизированного газового потока.

Однако ионизированный газовый поток при столкновении с экраном теряет часть зарядов за счет их притяжения и растекания по поверхности конусообразного отражателя. В результате уменьшается степень ионизации и скорость отраженного газового потока.

Двойное отражение детонационной волны в противоположных направлениях от экрана и отражателя создает тягу, равную разности сил механических воздействий, что приведет в зависимости от их соотношения или к очень малому значению тяги, или к нулевой тяге или даже изменит направление тяги. Поэтому такое устройство не может использоваться как двигатель.

В кольцевой камере сгорания образовавшаяся детонационная волна распространяется в обоих продольных направлениях. Однако конструкция двигателя не имеет устройств, препятствующих прохождению фронта детонационного горения в зоны активации окислителя и горючего, что может вызвать детонацию в этих зонах.

Кроме того, в таком устройстве электрические импульсы формируются на экране и отражателе и снимаются с их поверхностей при ударном воздействии по ним ионизированного газового потока. Для обеспечения высоких значений ионизации потока необходимо использовать дополнительные мероприятия, например введение в топливо легкоионизированных добавок. Такое устройство менее эффективно, чем преобразователь, построенный на преобразовании ударных воздействий в электрические импульсы с помощью сегнетоэлектриков.

Известна камера пульсирующего двигателя детонационного горения построенная по инвертированной схеме (патент № 2084675), содержащая расположенные в корпусе сверхзвуковое сопло и соосно с ним резонатор Гартмана в виде трубки, замкнутой с одного конца и открытой с другого конца. Они располагаются таким образом, что между внутренней поверхностью корпуса и наружной поверхностью сопла образована полость, являющаяся камерой смешения, выходная часть которой представляет критическое сечение с дальнейшим переходом в сверхзвуковое сопло внешнего расширения с усеченным центральным телом.

Такая камера пульсирующего двигателя не имеет предварительной подготовки топлива к детонационному сгоранию, и поэтому КПД ее низкий.

Пульсирующий детонационный двигатель, построенный по инвертированной схеме (патент СССР № 1672933 от 22.04.1991, патент РФ № 2034996 от 10.05.1995, Химическая физика, 2001, том 20, № 6, с.90-98), состоит из реактора и резонатора, соединенных между собой через кольцевое сопло. Сжатый воздух и топливо подаются в реактор, и в нем осуществляется предварительная подготовка топлива к детонационному сгоранию путем разложения компонентов топливно-воздушной смеси на химически активные составляющие, для чего в реакторе осуществляют пиролиз горючего до получения рабочей смеси.

Подготовленная смесь через кольцевое сопло в виде радиальных сверхзвуковых струй подается в резонатор, в результате на основе известного эффекта Гартмана-Шпренгера возникают ударные волны, которые при движении в сторону днища сжимают и нагревают горючую смесь. Отражаясь от донной поверхности резонатора, имеющего вогнутую форму, ударные волны фокусируются в узкой области, где происходит дальнейшее повышение температуры и давления, на основе известного эффекта Гартмана-Шпренгера, способствующих детонации горючей смеси. Возникающая детонационная волна движется по топливно-воздушной смеси со сверхзвуковой скоростью в обоих продольных направлениях, при этом происходит практически мгновенное (взрывное) сгорание топлива, сопровождающееся значительным повышением температуры и давления продуктов сгорания. Детонационная волна, встречаясь со сверхзвуковым потоком рабочей смеси, образует «газовый затвор», который преграждает путь сверхзвуковому потоку рабочей смеси в резонатор. После отражения от донной стенки детонационная волна превращается в отраженную ударную волну, которая по сгоревшей смеси движется в сторону выхода и увлекает за собой продукты сгорания, выбрасывая их в атмосферу со сверхзвуковой скоростью. Воздействие детонационной волны на внутреннюю донную поверхность резонатора создает тягу. За отраженной ударной волной следует волна разрежения, которая, проходя мимо кольцевого сопла и имея за фронтом давление меньше атмосферного, обеспечивает открытие «газового замка» и всасывание новой порции рабочей смеси. Далее процесс повторяется.

Недостатками такого пульсирующего детонационного двигателя являются:

Снижение к.п.д. двигателя за счет расхода части топлива при пиролизе горючего в реакторе для разложения топливно-воздушной смеси на химически активные составляющие;

Газодинамический клапан Гартмана не полностью исключает проникновение фронта детонационного горения через кольцевое сопло в реактор;

Не осуществляется преобразование кинетической энергии отраженных ударных и детонационных волн от донной поверхности резонатора в электрическую импульсную энергию.

По наибольшему количеству сходных признаков данное техническое решение выбрано в качестве прототипа.

Целью создания предлагаемого пульсирующего детонационного двигателя является упрощение конструкции, улучшение массогабаритных и эксплуатационных параметров, повышение удельных тяговых характеристик.

Предлагаемый пульсирующий детонационный двигатель включает два основных узла: реактор и резонатор.

В реакторе для повышения эффективности горения предварительно подготавливают смесь окислителя и горючего. В резонаторе в результате пересечений струй смеси, выходящих из кольцевого сопла со сверхзвуковой скоростью, автоматически возникает процесс горения и формируются ударные и детонационные волны.

Горение как элементарная химическая реакция может произойти только в объеме, где имеет место столкновение молекул топлива и окислителя.

Подготовка такого объема заключается в формировании контактной поверхности потоков окислителя и горючего. Увеличить площадь контактной поверхности можно генерацией вихревых течений в потоках горючего и окислителя. В возмущенном турбулентном потоке площади контактной поверхности двух сред растут во времени по экспоненциальному закону. Увеличение площади контактной поверхности способствует интенсификации процесса смешения горючего и окислителя.

Главным звеном предварительной подготовки смеси окислителя и горючего является активация молекул смеси путем модернизации их электронно-ядерной структуры. Суммарная энергия связей в активированной молекуле существенно меньше, чем в той же молекуле в свободном основном состоянии. В активированной молекуле межъядерные расстояния увеличены, чтобы затем при свершении химической реакции горения полностью покинуть друг друга и стать частями новых конечных молекул. Активация есть снижение энергетического барьера молекул смеси, вызванная воздействием на ее молекулы электромагнитным излучением или другими видами воздействий.

Таким образом, для обеспечения предварительной подготовки смеси в реакторе с целью повышения эффективности горения в резонаторе необходимо:

Создать вихревое смешение окислителя и горючего;

Осуществить активацию молекул смеси путем воздействия на них электромагнитным излучением или потоком различных элементарных частиц.

Вихревое смешение можно осуществить путем тангенциального введения в объем реактора горючего и продольного введения окислителя, при которых их струи взаимно пересекаются. Активацию молекул смеси можно обеспечить при воздействии на них электромагнитным излучением.

В предлагаемой заявке техническая реализация предварительной подготовки смеси окислителя и горючего осуществляется путем установки в реакторе входных топливных патрубков, тангенциально направленных вдоль внутренней полости реактора, и продольно направленного патрубка окислителя. При подаче в них окислителя и горючего в реакторе происходит вихревая закрутка потока, обеспечивающая интенсивное круговое смешение. Для активации смеси в реакторе используется электромагнитное воздействие на молекулы окислителя и горючего с помощью подачи на электроды импульсов тока. При наличии в районе электродов магнитного поля, кроме того, возникают вторичные вихревые течения потока смеси, порожденные взаимодействием тока электрического разряда с магнитным полем (Клементьев И.Б. и др. «Взаимодействие электрического разряда с газовой средой во внешнем магнитном поле и влияние этого взаимодействия на структуру потока и смешение», Теплофизика высоких температур, 2010, № 1).

Так как время жизни активированных состояний молекул мало, активация осуществляется непосредственно перед подачей смеси в резонатор, поэтому постоянный магнит и электроды размещены на критическом сечении кольцевого сопла. Активация осуществляется в течение длительностей подаваемых на электроды импульсов тока. Требуемая мощность таких импульсов небольшая, так как окислитель и горючее уже смешаны, а активации подвергается небольшой объем смеси, находящейся в пространстве критического сечения сопла. При этом мощность импульсов должна быть невысокой еще и для того, чтобы при активации не возникал процесс воспламенения смеси.

Средством импульсной активации смеси окислителя и горючего являются электроды, размещенные в реакторе на выходах кольцевого сопла Гартмана, которые соединены с электрическим выходом пьезогенератора.

Резонатор выполнен из немагнитного материала в виде трубы меньшего диаметра и размещен в трубе реактора так, чтобы выход кольцевого сопла Гартмана был направлен во внутреннюю полость резонатора.

Вогнутое дно резонатора изготовлено из двух частей, разделенных буфером, внутренняя часть выполнена из материала, выдерживающего высокие импульсные механические нагрузки, а наружная - из блока пьезоэлектрических элементов, соединенных электрически параллельно, являющихся совместно с резонансным контуром пьезогенератором.

Механические ударные воздействия детонационных и ударных волн за счет ударной деполяризации сегнетоэлектрика преобразуются в импульсную электрическую энергию. Пьезогенератор состоит из блока пьезоэлектрических элементов, соединенных параллельно, и резонансного контура.

В резонаторе при взаимодействии сверхзвуковых струй активированной смеси, выходящих из кольцевого сопла, инициируется химическая реакция воспламенения смеси и ударная волна, которая после отражения от вогнутого дна резонатора фокусируется и, создавая в месте фокусировки высокую температуру и давление, обеспечивает возникновение детонационного горения и распространения детонационной волны в обоих продольных направлениях. После выхода продуктов сгорания со сверхзвуковой скоростью в атмосферу возникает волна разрежения, которая обеспечивает всасывание новой порции активированной смеси, и процесс повторяется.

Первый вариант пульсирующего детонационного двигателя состоит из:

Корпуса;

Средства для подачи горючего и окислителя в реактор;

Реактора в виде трубы, в которую в передней части поступает топливно-воздушная смесь, а ее задний конец загнут вовнутрь и образует кольцевое сопло Гартмана;

Средств импульсной активации топливно-воздушной смеси, размещенных в реакторе на выходах кольцевого сопла Гартмана;

Резонатора из немагнитного материала в виде трубы меньшего диаметра, размещенной в трубе реактора. Передний конец трубы резонатора имеет вогнутое дно, а задний соединен с выходом кольцевого сопла;

На внутренней поверхности резонатора имеется шероховатость в виде нарезки, на внешней поверхности резонатора установлены два постоянных магнита, создающих магнитное поле внутри резонатора, направленное перпендикулярно его продольной оси;

Вогнутое дно резонатора состоит из двух частей, разделенных буфером, обеспечивающим уменьшение силы ударного воздействия. Внутренняя часть выполнена из материала, выдерживающего высокие импульсные механические нагрузки, а наружная - из блока пьезоэлектрических элементов, соединенных параллельно, обеспечивающих преобразование кинетической энергии ударной волны в электрическую энергию;

Электрический выход пьезогенератора соединен с входами средств импульсной активации топливно-воздушной смеси.

Второй вариант устройства отличается от первого тем, что:

Точка пересечения струй ионизированной топливно-воздушной смеси, вытекающей из сопла Гартмана, совмещена с точкой фокусирования отраженной ударной волны. Такое совмещение улучшает условия возникновения детонационной волны;

Выход резонатора выполнен в виде расширяющегося реактивного сопла, обеспечивающего дополнительный газодинамический разгон рабочего тела (ионизированного газового потока);

На наружной поверхности реактивного сопла размещены два постоянных магнита, создающих магнитное поле внутри сопла, направленное перпендикулярно его продольной оси;

На внутренней поверхности резонатора отсутствует шероховатость в виде нарезки.

Новыми существенными признаками обоих устройств являются:

Размещение резонатора в виде трубы меньшего диаметра в трубе реактора так, чтобы выход кольцевого сопла был направлен во внутреннюю полость резонатора;

Установка на внешней поверхности резонатора или реактивного сопла двух постоянных магнитов, создающих магнитное поле внутри резонатора или сопла, направленное перпендикулярно их продольной оси;

Изготовление вогнутого дна резонатора из двух частей, разделенных буфером, уменьшающим ударные нагрузки. Внутренняя часть дна выполнена из материала, выдерживающего высокие импульсные воздействия детонационных волн, а наружная - из блока пьезоэлектрических элементов, соединенных параллельно, образующих пьезогенератор;

Выход источника импульсного тока соединен последовательно с входами средств импульсной активации, расположенных в реакторе на выходах кольцевого сопла Гартмана.

Технический результат, который может быть получен при реализации совокупности признаков, заключается в следующем:

Предварительная подготовка смеси за счет ее вихревого смешения и активации, а также конструктивные особенности резонатора и реактора обеспечивают повышение эффективности горения и мощности детонационных волн, увеличивающих силу тяги и удельные тяговые характеристики двигателя;

Кинетическая энергия ударных волн о дно резонатора ранее использовалась только для создания тяги, в предлагаемом устройстве она еще преобразуется в электрическую энергию, которая используется для активации смеси окислителя и горючего. Такое техническое решение приводит к снижению массогабаритных характеристик двигателя и упрощает его конструкцию.

Сущность изобретения поясняется чертежами, где на Фиг.1 представлен первый вариант устройства, на Фиг.3 - второй вариант устройства, а на Фиг.2 - схема импульсного источника тока и его связь со средствами активации.

Устройства содержат корпус 1, реактор 2, заполняемый с помощью блока 11 окислителем и горючим, в которое введены легкоионизированные добавки, импульсное средство активации топливно-воздушной смеси 3, кольцевое сопло 4, постоянные магниты 5, реактивное сопло 7 или шероховатость в виде нарезки 7 на внутренней поверхности резонатора 6 для турбулизации газового потока. Дно резонатора состоит из трех частей. Внутренняя часть дна 8 выполнена из высокопрочного материала, промежуточная часть - буфер 9 для снижения силы ударного воздействия на пьезоэлектрические элементы, наружная - в виде пьезогенератора 10 с резонансным контуром 13. Для усиления конструкции реактор и резонатор соединены кольцевой стойкой 12, через отверстия в которой проходят провода, последовательно соединяющие выход пьезогенератора 10 с электродами средств активации.

Работа пульсирующего детонационного двигателя начинается с заполнения блоком 11 реактора 2 под давлением окислителем и горючим через тангенциально и продольно направленные патрубки. Струи горючего, вращаясь, пересекаются со струей окислителя, образуя вихревое смешение.

От внешнего источника подается запускающая серия импульсов на средства активации топлива 3, которые обеспечивают разложение топливно-воздушной смеси на выходе сопла Гартмана на химически активные составляющие. Ионизированная топливно-воздушная смесь вытекает со сверхзвуковой скоростью из сопла в виде радиальных струй, направленных во внутреннюю полость резонатора 6.

При их столкновении и смешивании инициируется химическая реакция воспламенения топлива и возникает ударная волна, движущаяся в сторону днища резонатора 6.

Шероховатость внутренних стенок 7 резонатора 6 обеспечивает высокую интенсивность турбулентного смешивания в сдвиговых слоях за счет вихревых движений в области за препятствиями и за счет генерации поперечных ударных волн.

Между ускоряющейся зоной турбулентного горения и головной ударной волной возникают «горячие точки» вследствие неоднородности потока на контактных поверхностях, образованных шероховатостью 7. В таких локальных экзотермических центрах зарождается детонация.

Кроме того, головная ударная волна после отражения от вогнутого дна резонатора фокусируется и, создавая в этом месте высокую температуру и давление, обеспечивает возникновение детонационного горения и распространение детонационной волны в обоих продольных направлениях. Во втором варианте устройства при совмещении точки пересечения струй с точкой фокусировки отраженной ударной волны надобность в шероховатости внутренней поверхности резонатора отпадает.

Следующие за детонационными волнами сильно ионизированные газовые потоки, проходя через магнитное поле, вызывают возникновение сил, действующих на них в направлении движения. В результате увеличиваются скорости движения потоков, движущихся как в сторону дна резонатора, так и в противоположную сторону на выход из резонатора.

После отражения от дна детонационная волна становится отраженной ударной волной и вместе с ионизированным газовым потоком, проходя через магнитное поле, увеличивает скорость газового потока в направлении выхода из резонатора. Выход резонатора 6 выполнен в виде расширяющегося реактивного сопла, обеспечивающего дальнейшее увеличение скорости истекающих газов.

В течение механического воздействия детонационной волны на дно резонатора происходит деполяризация элементов сегнетоэлектриков, выполненных в виде блока из нескольких одинаковых пластин, соединенных электрически параллельно и расположенных по отношению друг к другу, как показано на Фиг.2. Такой пьезогенератор создает импульсы тока, амплитуда которых увеличивается при настройке контура 13 на резонанс. Импульсы с частотой следования детонационных процессов подаются на вход устройств активации топлива, обеспечивая разложение топливно-воздушной смеси на химически активные составляющие.

После выхода продуктов сгорания со сверхзвуковой скоростью в атмосферу возникает волна разрежения. Пониженное давление в полости резонатора обеспечивает всасывание новой порции активированной смеси и процесс повторяется.

Реализация заявленного технического решения не вызывает сомнения, так как при его изготовлении будут использоваться известные технологии организации детонационных процессов и преобразования энергии детонационной волны в электрическую энергию (Электрические явления в ударных волнах/ Под редакцией В.А.Борисенка и др. - Саров: РФЯЦ-ВНИИЭФ, 2005).

Было показано, что взрывные пьезогенераторы обладают оптимальными характеристиками как генераторы токовых импульсов, мощность которых достигает нескольких мегаватт, энергия - десятков джоулей, поэтому они обеспечат эффективную работу средств импульсной активации.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Пульсирующий детонационный двигатель, содержащий корпус, средства для подачи горючего и окислителя в реактор, кольцевое сопло и газодинамический резонатор, отличающийся тем, что резонатор в виде трубы меньшего диаметра размещен в трубе реактора так, чтобы выход кольцевого сопла Гартмана был направлен во внутреннюю полость резонатора, причем вогнутое дно резонатора изготовлено из двух частей, разделенных буфером, внутренняя часть выполнена из материала, выдерживающего высокие импульсные механические нагрузки, а наружная - из блока пьезоэлектрических элементов, соединенных электрически параллельно, являющихся совместно с резонансным контуром пьезогенератором.

2. Пульсирующий детонационный двигатель по п.1, отличающийся тем, что на внешней поверхности резонатора или реактивного сопла установлены два постоянных магнита, создающих магнитное поле внутри резонатора, направленное перпендикулярно их продольной оси.

3. Пульсирующий детонационный двигатель по п.1, отличающийся тем, что выход пьезогенератора соединен с входами средств импульсной активации.

4. Пульсирующий детонационный двигатель по п.1, отличающийся тем, что конструктивно резонатор выполнен так, что совмещены точка пересечения струй топливно-воздушной смеси, вытекающей из кольцевого сопла, и точка фокусировки отраженной ударной волны.

5. Пульсирующий детонационный двигатель по п.1, отличающийся тем, что средства импульсной активации размещены на выходах кольцевого сопла Гартмана.

Глава пятая

Пульсирующий воздушно-реактивный двигатель

На первый взгляд возможность значительного упрощения двигателя при переходе к большим скоростям полета кажется странной, пожалуй, даже невероятной. Вся история авиации до сих пор говорит о противоположном: борьба за увеличение скорости полета приводила к усложнению двигателя. Так было с поршневыми двигателями: мощные двигатели скоростных самолетов периода второй мировой войны значительно сложнее тех двигателей, которые устанавливались на самолетах в первый период развития авиации. То же происходит сейчас с турбореактивными двигателями: достаточно вспомнить о сложной проблеме увеличения температуры газов перед турбиной.

И вдруг такое принципиальное упрощение двигателя, как полное устранение газовой турбины. Возможно ли это? Как же будет приводиться во вращение компрессор двигателя, необходимый для сжатия воздуха, - ведь без такого сжатия не может работать турбореактивный двигатель?

Но так ли необходим компрессор? Нельзя ли обойтись без компрессора и как-нибудь иначе обеспечить необходимое сжатие воздуха?

Оказывается, такая возможность существует. Мало того: этого можно достичь даже не одним способом. Воздушно-реактивные двигатели, в которых применен один такой метод бескомпрессорного. сжатия воздуха, нашли даже практическое применение в авиации. Это было еще в период второй мировой войны.

В июне 1944 г. жители Лондона впервые познакомились с новым оружием немцев. С противоположной стороны пролива, с берегов Франции, на Лондон неслись небольшие самолеты странной формы с громко тарахтевшим двигателем (рис. 39). Каждый такой самолет представлял собой летящую бомбу - на нем находилось около тонны взрывчатого вещества. Летчиков на этих «самолетах-роботах» не было; они управлялись приборами-автоматами и также автоматически, вслепую пикировали на Лондон, сея смерть и разрушения. Это были реактивные самолеты-снаряды.

Реактивные двигатели самолетов-снарядов не имели компрессора, но тем не менее развивали тягу, необходимую для полета с большой скоростью. Как же работают эти так называемые пульсирующие воздушно-реактивные двигатели?

Следует отметить, что еще в 1906 г. русский инженер-изобретатель В. В. Караводин предложил, а в 1908 г. построил и испытал пульсирующий двигатель, похожий на современные двигатели этого типа.

Рис. 39. Реактивный самолет-снаряд. Свыше 8000 таких «самолетов-роботов» было выпущено гитлеровцами во время второй мировой войны для бомбардировки Лондона

Чтобы познакомиться с устройством пульсирующего двигателя, войдем в помещение испытательной станции завода, изготовляющего такие двигатели. Кстати, один из двигателей уже установлен на испытательном станке, скоро начнутся его испытания.

Снаружи этот двигатель прост - он состоит из двух тонкостенных труб, спереди - короткой, большего диаметра, сзади - длинной, меньшего диаметра. Обе трубы соединены конической переходной частью. И спереди, и сзади торцовые отверстия двигателя открыты. Это понятно - через переднее отверстие в двигатель засасывается воздух, через заднее - вытекают в атмосферу горячие газы. Но как же создается в двигателе повышенное давление, необходимое для его работы?

Заглянем в двигатель через его входное отверстие (рис. 40). Оказывается, внутри, сразу за входным отверстием, находится перегораживающая двигатель решетка. Если мы посмотрим внутрь двигателя через выходное отверстие, то увидим вдалеке ту же решетку. Ничего другого внутри двигателя, оказывается, нет. Следовательно, эта решетка заменяет и компрессор, и турбину турбореактивного двигателя? Что же это за такая «всемогущая» решетка?

Но нам сигнализируют через окно наблюдательной кабины - нужно уходить из бокса (так обычно называют помещение, в котором находится испытательная установка), сейчас начнутся испытания. Займем место у пульта управления рядом с инженером, ведущим испытания. Вот инженер нажимает пусковую кнопку. В камеру сгорания двигателя через форсунки начинает поступать топливо - бензин, который сразу воспламеняется электрической искрой, и из выходного отверстия двигателя вырывается клубок раскаленных газов. Еще клубок, еще один - и вот уже отдельные хлопки превратились в оглушительное тарахтение, слышное даже в кабине, несмотря на хорошую звукоизоляцию.

Войдем снова в бокс. Резкий грохот обрушивается на нас, как только мы открываем дверь. Двигатель сильно вибрирует и, кажется, вот-вот сорвется со станка под действием развиваемой им тяги. Из выходного отверстия вырывается струя раскаленных газов, устремляющаяся в воронку отсасывающего устройства. Двигатель быстро разогрелся. Осторожно, не положите руку на его корпус - обожжете!

Стрелка на большом циферблате прибора для измерения тяги - динамометра, установленного в помещении так, что его показания можно прочесть через окна наблюдательной кабины, колеблется около цифры 250. Значит, двигатель развивает тягу, равную 250 кг. Но понять, как работает двигатель и почему он развивает тягу, нам все же не удается. Компрессора в двигателе нет, а из него с большой скоростью вырываются газы, создавая тягу; значит, давление внутри двигателя повышено. Но как? Чем сжимается воздух?

Рис. 40. Пульсирующий воздушно-реактивный двигатель:

а - принципиальная схема; б - схема установки дефлекторов 1 и входной решетки 2 (на рисунке справа входная решетка снята); в - передняя часть двигателя; г - устройство решетки

На этот раз нам не помог бы даже и зеленый воздушный океан, с помощью которого мы раньше наблюдали за работой винта и турбореактивного двигателя. Если бы мы поместили работающий пульсирующий двигатель с прозрачными стенками в такой океан, то перед нами предстала бы такая картина. Спереди к выходному отверстию двигателя устремляется засасываемый им воздух - перед этим отверстием появляется знакомая нам воронка, которая своим узким и более темным концом обращена к двигателю. Из выходного отверстия вытекает струя, имеющая темнозеленый цвет, свидетельствующий о том, что скорость газов в струе велика. Внутри двигателя цвет воздуха по мере его продвижения к выходному отверстию постепенно темнеет, значит скорость движения воздуха увеличивается. Но почему это происходит, какую роль играет решетка внутри двигателя? Ответить на этот вопрос мы все еще не можем.

Не многим помог бы нам и другой воздушный океан - красный, к помощи которого мы прибегали при изучении работы турбореактивного двигателя. Мы убедились бы только в том, что сразу за решеткой цвет воздуха в двигателе становится темнокрасным, значит в этом месте его температура резко возрастает. Это легко объяснимо, так как здесь, очевидно, происходит сгорание топлива. Темнокрасный цвет имеет и реактивная струя, вытекающая из двигателя, - это раскаленные газы. Но почему эти газы вытекают с такой большой скоростью из двигателя, мы так и не узнали.

Может быть, загадку можно разъяснить, если воспользоваться таким искусственным воздушным океаном, который показывал бы нам, как изменяется давление воздуха? Пусть это будет, например, синий воздушный океан, причем такой, что цвет его становится тем более темносиним, чем больше давление воздуха. Попытаемся при помощи этого океана выяснить, где и как рождается внутри двигателя то повышенное давление, которое заставляет вытекать из него газы с такой большой скоростью. Но увы, и этот синий океан не принес бы нам большой пользы. Поместив в такой воздушный океан двигатель, мы увидим, что за решеткой воздух сразу густо синеет, значит он сжимается и его давление резко повышается. Но как это происходит? Ответа на этот вопрос мы все же не получим. Потом в длинной выходной трубе воздух снова бледнеет, следовательно, в ней он расширяется; благодаря этому расширению скорость истечения газов из двигателя оказывается такой большой.

В чем же все-таки заключается секрет «таинственного» сжатия воздуха в пульсирующем двигателе?

Этот секрет, оказывается, можно разгадать, если применить для изучения явлений в двигателе киносъемку «лупой времени». Если прозрачный работающий двигатель сфотографировать в синем воздушном океане, делая тысячи снимков в секунду, а затем показать получившийся фильм с обычной частотой 24 кадра в секунду, то перед нами на экране медленно развертывались бы процессы, стремительно происходящие в двигателе. Тогда нетрудно было бы понять, почему не удается рассмотреть эти процессы на работающем двигателе, - они так быстро следуют один за другим, что глаз в обычных условиях не успевает следить за ними и фиксирует лишь какие-то усредненные явления. «Лупа времени» позволяет «замедлить» эти процессы и делает возможным их изучение.

Вот в камере сгорания двигателя за решеткой произошла вспышка - впрыснутое топливо воспламенилось и давление резко повысилось (рис. 41). Такого сильного повышения давления не произошло бы, конечно, если бы камера сгорания за решеткой была непосредственно сообщена с атмосферой. Но она соединена с ней длинной, относительно узкой трубой: воздух в этой трубе служит как бы поршнем; пока происходит разгон этого «поршня», давление в камере повышается. Давление повысилось бы еще сильнее, если бы на выходе из камеры имелся какой-нибудь клапан, закрывающийся в момент вспышки. Но этот клапан был бы очень ненадежным - ведь его омывали бы раскаленные газы.

Рис. 41. Так работает пульсирующий воздушно-реактивный двигатель:

а - произошла вспышка топлива, клапана решетки закрыты; б - в камере сгорания создалось разрежение, клапана открылись; в - воздух входит в камеру через решетку и через выхлопную трубу; г - так меняется по времени давление в камере сгорания работающего двигателя

Под действием повышенного давления в камере сгорания продукты горения и еще продолжающие гореть газы устремляются с большой скоростью наружу, в атмосферу. Мы видим, как клубок раскаленных газов мчится по длинной трубе к выходному отверстию. Но что это? В камере сгорания позади этого клубка давление понизилось так же, как это происходит, например, за движущимся в цилиндре поршнем; воздух там стал светлосиним. Вот он все светлеет и, наконец, становится светлее окружающего двигатель синего океана. Это значит, что в камере создалось разрежение. Тотчас же лепестки стальных пластинчатых клапанов решетки, служащих для закрывания отверстий в ней, отгибаются под напором атмосферного воздуха. Отверстия в решетке открываются, и внутрь двигателя врывается свежий воздух. Понятно, что если входное отверстие двигателя закрыть, как это изобразил на шуточном рисунке (рис. 42) художник, то двигатель работать не сможет. Следует отметить, что похожие на тонкое лезвие безопасной бритвы стальные клапаны решетки, являющиеся единственными движущимися частями пульсирующего двигателя, обычно и ограничивают срок его службы - они выходят из строя через несколько десятков минут работы.

Рис. 42. Если прекратить доступ воздуха в пульсирующий воздушно-реактивный двигатель, то он моментально заглохнет (Можно «бороться» с самолетами-снарядами и так. Шуточный рисунок, помещенный в одном из английских журналов в связи с применением гитлеровцами самолетов-снарядов для бомбардировки Лондона)

Все дальше движется темносиний «поршень» горячих газов по длинной трубе к выходному отверстию, все больше свежего воздуха поступает через решетку в двигатель. Но вот газы вырвались из трубы наружу. Мы с трудом могли разглядеть клубки раскаленных газов в струе, когда находились в испытательном боксе, так быстро они следовали один за другим. Ночью же в полете пульсирующий двигатель оставляет за собой отчетливо видный светящийся пунктир, образованный клубками раскаленных газов (рис. 43).

Рис. 43. Такой светящийся пунктир оставляет за собой летящий ночью самолет-снаряд с пульсирующим воздушно-реактивным двигателем

Как только газы вырвались из выхлопной трубы двигателя, в нее устремился через выходное отверстие свежий воздух из атмосферы. Теперь в двигателе мчатся навстречу друг другу два урагана, два воздушных потока - один из них вошел через входное отверстие и решетку, другой - через выходное отверстие двигателя. Еще мгновение, и давление внутри двигателя повысилось, цвет воздуха в нем стал таким же синим, как и в окружающей атмосфере. Лепестки клапанов захлопнулись, прекратив этим вход воздуха через решетку.

Но воздух, поступивший через выходное отверстие двигателя, продолжает по инерции двигаться по трубе внутрь двигателя, и в трубу засасываются из атмосферы все новые порции воздуха. Длинный столб воздуха, движущийся по трубе, как поршень, сжимает воздух, находящийся в камере сгорания у решетки; цвет его становится более синим, чем в атмосфере.

Вот что, оказывается, заменяет компрессор в этом двигателе. Но давление воздуха в пульсирующем двигателе значительно ниже, чем в турбореактивном двигателе. Этим, в частности, объясняется то, что пульсирующий двигатель менее экономичен. Он расходует значительно больше топлива на килограмм тяги, чем турбореактивный двигатель. Ведь чем больше повышается давление в воздушно-реактивном двигателе, тем большую полезную работу он совершает при том же расходе топлива.

В сжатый воздух снова впрыскивается бензин, вспышка - и все повторяется сначала с частотой в десятки раз в секунду. В некоторых пульсирующих двигателях частота рабочих циклов достигает ста и более циклов в секунду. Это значит, что весь рабочий процесс двигателя: всасывание свежего воздуха, его сжатие, вспышка, расширение и истечение газов - длится около 1/100 секунды. Поэтому нет ничего удивительного в том, что без «лупы времени» нам не удавалось разобраться в том, как работает пульсирующий двигатель.

Такая периодичность работы двигателя и позволяет обойтись без компрессора. Отсюда возникло и само название двигателя - пульсирующий. Как видно, секрет работы двигателя связан с решеткой на входе в двигатель.

Но, оказывается, пульсирующий двигатель может работать и без решетки. На первый взгляд это кажется невероятным - ведь если входное отверстие не закрыть решеткой, то при вспышке газы потекут в обе стороны, а не только назад, через выходное отверстие. Однако если мы сузим входное отверстие, т. е. уменьшим его сечение, то можно добиться того, что основная масса газов будет вытекать через выходное отверстие. В этом случае двигатель все же будет развивать тягу, правда меньшую по величине, чем двигатель с решеткой. Такие пульсирующие двигатели без решетки (рис. 44, а) не только исследуются в лабораториях, но и устанавливаются на некоторых экспериментальных самолетах, как это изображено на рис. 44, б. Исследуются и другие двигатели этого же типа - в них оба отверстия, и входное и выходное, обращены назад, против направления полета (см. рис. 44, в ); такие двигатели получаются более компактными.

Пульсирующие воздушно-реактивные двигатели значительно проще турбореактивных и поршневых двигателей. В них нет движущихся частей, если не считать пластинчатых клапанов решетки, без которых, как указывалось выше, тоже можно обойтись.

Рис. 44. Пульсирующий двигатель, не имеющий решетки на входе:

а - общий вид (на рисунке показан примерный размер одного из таких двигателей); б - легкий самолет с четырьмя пульсирующими двигателями, подобными двигателю, изображенному выше; в - один из вариантов устройства двигателя без входной решетки

Благодаря простоте конструкции, дешевизне и малому весу пульсирующие двигатели находят применение в таком оружии одноразового действия, как самолеты-снаряды. Они могут сообщить им скорость 700-900 км/час и обеспечить дальность полета в несколько сот километров. Для такого назначения пульсирующие воздушно-реактивные двигатели подходят лучше любых других авиационных двигателей. Если бы, например, на описанном выше самолете-снаряде вместо пульсирующего двигателя решили бы установить обычный поршневой авиационный двигатель, то для получения той же скорости полета (примерно 650 км/час ) понадобился бы двигатель мощностью около 750 л. с. Он расходовал бы примерно в 7 раз меньше топлива, но зато был бы по крайней мере в 10 раз тяжелее и неизмеримо дороже. Следовательно, при увеличении дальности полета пульсирующие двигатели становятся невыгодными, так как увеличение расхода топлива не компенсируется при этом экономией в весе. Пульсирующие воздушно-реактивные двигатели могут найти применение и в легкомоторной авиации, на вертолетах и т. д.

Простые пульсирующие двигатели представляют большой интерес и для установки их на авиамоделях. Изготовить небольшой пульсирующий воздушно-реактивный двигатель для авиамодели под силу любому авиамодельному кружку. В 1950 году, когда в здании Академии наук в Москве, в Харитоньевском переулке, представители научно-технической общественности столицы собрались на вечер, посвященный памяти основоположника реактивной техники Константина Эдуардовича Циолковского, внимание присутствующих привлек крохотный пульсирующий двигатель. Этот двигатель для авиамодели был укреплен на небольшой деревянной подставке. Когда в перерыве между заседаниями «конструктор» двигателя, державший подставку в руках, запустил его, то громкое резкое тарахтение заполнило все углы старинного здания. Быстро разогревшийся до красного каления двигатель неудержимо рвался с подставки, наглядно демонстрируя силу, лежащую в основе всей современной реактивной техники.

Пульсирующие воздушно-реактивные двигатели так просты, что их можно с полным правом назвать летающими топками. В самом деле, установлена на самолете труба, горит в этой трубе топливо, и развивает она тягу, заставляющую лететь с большой скоростью самолет.

Однако с еще большим правом можно назвать летающими топками двигатели другого типа, так называемые прямоточные воздушно-реактивные двигатели. Если пульсирующие воздушно-реактивные двигатели могут рассчитывать лишь на сравнительно ограниченное применение, то перед прямоточными воздушно-реактивными двигателями раскрываются широчайшие перспективы; они являются двигателями будущего в авиации. Это объясняется тем, что с увеличением скорости полета выше 900-1000 км/час пульсирующие двигатели становятся все менее выгодными, так как они развивают меньшую тягу и потребляют больше топлива. Прямоточные двигатели, наоборот, наиболее выгодны именно при сверхзвуковых скоростях полета. При скорости полета в 3-4 раза большей, чем скорость звука, прямоточные двигатели превосходят любые другие известные авиационные двигатели, в этих условиях им нет равных.

Прямоточный двигатель внешне похож на пульсирующий. Он также представляет собой бескомпрессорный воздушно-реактивный двигатель, но отличается от пульсирующего принципиально тем, что работает не периодически. Через него непрерывно течет установившийся, постоянный поток воздуха, как и через турбореактивный двигатель. Как же в прямоточном воздушно-реактивном двигателе осуществляется сжатие поступающего воздуха, если в нем нет ни компрессора, как в турбореактивном двигателе, ни периодических вспышек, как в двигателе пульсирующем?

Оказывается, секрет такого сжатия связан с тем влиянием на работу двигателя, которое оказывает на нее быстро увеличивающаяся скорость полета. Это влияние играет огромную роль во всей скоростной авиации и будет играть все большую роль по мере дальнейшего увеличения скорости полета.

Из книги Танк, обогнавший время автора Вишняков Василий Алексеевич

Глава пятая. Гвадалахара, Гвадалахара…По дороге на службу майор Сурин старался не думать о предстоящих служебных делах. Он предпочитал поразмышлять о чем-нибудь более приятном - о женщинах, например. Вспоминал частенько тех из них, в которых когда-то влюблялся или мог бы

Из книги Загадка булатного узора автора Гуревич Юрий Григорьевич

ГЛАВА ПЯТАЯ СТАРЫЕ ЗНАКОМЫЕ Пусть человек пользуется прошедшими веками как материалом, на котором возрастает будущее… Жан Гюйо Наследники булата Холодное оружие давно потеряло ценность, а с ним ушли в прошлое и булаты. Еще раз подчеркнем: в сравнении с высокопрочными и

Из книги НЕТ автора Маркуша Анатолий Маркович

Глава пятая В бледно-синей бездонности яркого, солнечного неба белые вензеля инверсии. Пролетел по прямой – и след словно вытянут по линейке, прям и растекается медленно-медленно, неохотно, будто тает. Выписал вираж, и след – кольцо, громадное, курящееся кольцо, тихонько

Из книги Стрелковое оружие России. Новые модели автора Катшоу Чарли

Из книги Линейный корабль автора Перля Зигмунд Наумович

ГЛАВА ПЯТАЯ ГРАНАТОМЕТЫ С самого момента своего появления гранатометы стали важной неотъемлемой частью основного арсенала пехотинца. Их история началась с отдельных установок, таких, как американский гранатомет М-79; со временем появились гранатометы, устанавливаемые

Из книги Новые космические технологии автора Фролов Александр Владимирович

Глава пятая ЛИНКОРЫ В БОЮ Подвиг „Славы" етом 1915 года немцы наступали по побережью Балтики на территории нынешней Советской Латвии, подошли к начальным, южным излучинам Рижского залива и… остановились. До сих пор их Балтийский флот, свободно черпавший крупные силы из

Из книги Ракетные двигатели автора Гильзин Карл Александрович

Глава 1 Реактивный принцип в замкнутой системе Зададимся простым вопросом: на нашей планете постоянно в движении находятся миллиарды людей, машин и т. п. Все они двигаются реактивным методом, отталкиваясь от поверхности планеты. Каждый из нас движется по дороге в нужном

Из книги Джордж и сокровища вселенной автора Хокинг Стивен Уильям

Как устроен и работает жидкостно-реактивный двигатель Жидкостно-реактивные двигатели применяются в настоящее время в качестве двигателей для тяжелых ракетных снарядов противовоздушной обороны, дальних и стратосферных ракет, ракетных самолетов, ракетных авиабомб,

Из книги Тайна песчинки автора Курганов Оскар Иеремеевич

Глава пятая Джордж так устал за этот долгий день, что чуть не уснул, пока чистил зубы. Покачиваясь, он вошёл в комнату, которую ему предстояло делить с Эмметом. Тот сидел за компьютером и возился со своим тренажёром, запуская один за другим космические корабли.- Эй,

Из книги Сердца и камни автора Курганов Оскар Иеремеевич

Глава пятая Легко сказать - бежать. Побег надо подготовить, продумать, учесть все мельчайшие детали. В случае провала их ждет неминуемая смерть. Комендант лагеря объявил: каждый, кто попытается бежать из лагеря, будет повешен вниз головой.И каждый день на лагерном плацу

Из книги Мост через время автора Чутко Игорь Эммануилович

Глава двадцать пятая Хинт вернулся из Ленинграда в Таллин молчаливым и грустным. Это случалось с ним редко за последнее время, но теперь он задумался над своей жизнью, окружающими его людьми. В поезде, на вокзале, на берегу моря, где он сидел и молчал, Хинт не переставал

Из книги Как стать гением [Жизненная стратегия творческой личности] автора Альтшуллер Генрих Саулович

Глава пятая В шестидесяти километрах от Таллина, на торфяных болотах, немецкие фашисты создали во время войны «лагерь смерти» - люди здесь умирали от голода, болезней, истощения, от нечеловеческих пыток и страшного произвола. Узники лагеря добывали торф, а брикеты его

Из книги автора

Глава двадцать пятая Лехт вернулся из Ленинграда в Таллин молчаливым и грустным. Это случалось с ним редко за последнее время, но теперь он задумался над своей жизнью, над окружающими его людьми. В поезде, на вокзале, на берегу моря, где он сидел и молчал, Лехт не переставал

Из книги автора

Глава пятая После перерыва с содокладом выступил Петр Петрович Шилин. Высокий, худой, с впалыми щеками и каким-то сероватым цветом кожи, он производил впечатление человека болезненного. Но, пожалуй, единственный недуг, которым страдал Шилин, относился к его научным

Из книги автора

Глава пятая 1И вот – первые после войны известия о Гроховском: в книгах М.Н. Каминского и И.И. Лисова, в нескольких журнальных статьях и очерках. Кроме того, по заданию президиума Федерации парашютного спорта авторитетная комиссия написала доклад о зарождении и развитии

Из книги автора

Глава пятая Подлинная человечность, или авантюра самоотречения Разработка по теме качеств творческой личности впервые была начата летом 1984 года в ходе работы конференции по ТРИЗ в рамках СО АН СССР. В первой разработке по выявлению качеств приняли участие Г.С.

1

Рассмотрена проблема разработки импульсных детонационных двигателей. Перечислены основные научные центры, ведущие исследования по двигателям нового поколения. Рассмотрены основные направления и тенденции развития конструкции детонационных двигателей. Представлены основные типы таких двигателей: импульсный, импульсный многотрубный, импульсный с высокочастотным резонатором. Показано отличие в способе создания тяги по сравнению с классическим реактивным двигателем, оснащенным соплом Лаваля. Описано понятие тяговой стенки и тягового модуля. Показано, что импульсные детонационные двигатели совершенствуются в направлении повышения частоты следования импульсов, и это направление имеет свое право на жизнь в области легких и дешевых беспилотных летательных аппаратов, а также при разработке различных эжекторных усилителей тяги. Показаны основные сложности принципиального характера в моделировании детонационного турбулентного течения с использованием вычислительных пакетов, основанных на применении дифференциальных моделей турбулентности и осреднения уравнений Навье–Стокса по времени.

детонационный двигатель

импульсный детонационный двигатель

1. Булат П.В., Засухин О.Н., Продан Н.В. История экспериментальных исследований донного давления // Фундаментальные исследования. – 2011. – № 12 (3). – С. 670–674.

2. Булат П.В., Засухин О.Н., Продан Н.В. Колебания донного давления // Фундаментальные исследования. – 2012. – № 3. – С. 204–207.

3. Булат П.В., Засухин О.Н., Продан Н.В.. Особенности применения моделей турбулентности при расчете течений в сверхзвуковых трактах перспективных воздушно-реактивных двигателей // Двигатель. – 2012. – № 1. – С. 20–23.

4. Булат П.В., Засухин О.Н., Усков В.Н. О классификации режимов течения в канале с внезапным расширением // Теплофизика и Аэромеханика. – 2012. – № 2. – С. 209–222.

5. Булат П.В., Продан Н.В. О низкочастотных расходных колебаниях донного давления // Фундаментальные исследования. – 2013. – № 4 (3). – С. 545–549.

6. Ларионов С.Ю., Нечаев Ю.Н., Мохов А.А. Исследование и анализ «холодных» продувок тягового модуля высокочастотного пульсирующего детонационного двигателя // Вестник МАИ. – Т.14. – № 4 – М.: Изд-во МАИ-Принт, 2007. – С. 36–42.

7. Тарасов А.И., Щипаков В.А. Перспективы использования пульсирующих детонационных технологий в турбореактивных двигателя. ОАО «НПО «Сатурн» НТЦ им. А. Люльки, Москва, Россия. Московский авиационный институт (ГТУ). – Москва, Россия. ISSN 1727-7337. Авиационно-космическая техника и технология, 2011. – № 9 (86).

Проекты по детонационному горению в США включены в программу разработок перспективных двигателей IHPTET. В кооперацию входят практически все исследовательские центры, работающие в области двигателестроения. Только в NASA на эти цели выделяется до 130 млн $ в год. Это доказывает актуальность исследований в данном направлении.

Обзор работ в области детонационных двигателей

Рыночная стратегия ведущих мировых производителей направлена не только на разработку новых реактивных детонационных двигателей, но и на модернизацию существующих путем замены в них традиционной камеры сгорания на детонационную. Кроме того, детонационные двигатели могут стать составным элементом комбинированных установок различных типов, например, использоваться в качестве форсажной камеры ТРДД, в качестве подъемных эжекторных двигателей в СВВП (пример на рис. 1 - проект транспортного СВВП фирмы «Боинг»).

В США разработки детонационных двигателей ведут многие научные центры и университеты: ASI, NPS, NRL, APRI, MURI, Stanford, USAF RL, NASA Glenn, DARPA-GE C&RD, Combustion Dynamics Ltd, Defense Research Establishments, Suffield and Valcartier, Uniyersite de Poitiers, University of Texas at Arlington, Uniyersite de Poitiers, McGill University, Pennsylvania State University, Princeton University.

Ведущие позиции по разработке детонационных двигателей занимает специализированный центр Seattle Aerosciences Center (SAC), выкупленный в 2001 г. компанией Pratt and Whitney у фирмы Adroit Systems. Большая часть работ центра финансируется ВВС и NASA из бюджета межведомственной программы Integrated High Payoff Rocket Propulsion Technology Program (IHPRPTP), направленной на создание новых технологий для реактивных двигателей различных типов.

Рис. 1. Патент US 6,793,174 В2 фирмы «Боинг», 2004 г.

В общей сложности, начиная с 1992 г., специалистами центра SAC осуществлено свыше 500 стендовых испытаний экспериментальных образцов. Работы по пульсирующим детонационным двигателям (PDE) с потреблением атмосферного кислорода Центр SAC ведет по заказу ВМС США. Учитывая сложность программы, специалисты ВМС привлекли к ее реализации практически все организации, занимающиеся детонационными двигателями. Кроме компании Pratt and Whitney, в работах принимают участие Исследовательский центр United Technologies Research Center (UTRC) и фирма Boeing Phantom Works.

В настоящее время в нашей стране над этой актуальной проблемой в теоретическом плане работают следующие университеты и институты Российской академии наук (РАН): Институт химической физики РАН (ИХФ), Институт машиноведения РАН, Институт высоких температур РАН (ИВТАН), Новосибирский институт гидродинамики им. Лаврентьева (ИГиЛ), Институт теоретической и прикладной механики им. Христиановича (ИТМП), Физико-технический институт им. Иоффе, Московский государственный университет (МГУ), Московский государственный авиационный институт (МАИ), Новосибирский государственный университет, Чебоксарский государственный университет, Саратовский государственный университет и др.

Направления работ по импульсным детонационным двигателям

Направление № 1 - Классический импульсный детонационный двигатель (ИДД). Камера сгорания типичного реактивного двигателя состоит из форсунок для смешения топлива с окислителем, устройства поджигания топливной смеси и собственно жаровой трубы, в которой идут окислительно-восстановительные реакции (горение). Жаровая труба заканчивается соплом. Как правило, это сопло Лаваля, имеющее сужающуюся часть, минимальное критическое сечение, в котором скорость продуктов сгорания равна местной скорости звука, расширяющуюся часть, в которой статическое давление продуктов сгорания снижается до давления в окружающей среде, насколько это возможно. Очень грубо можно оценить тягу двигателя как площадь критического сечения сопла, умноженную на разность давления в камере сгорания и окружающей среде. Поэтому тяга тем выше, чем выше давление в камере сгорания.

Тяга импульсного детонационного двигателя определяется другими факторами - передачей импульса детонационной волной тяговой стенке. Сопло в этом случае вообще не нужно. Импульсные детонационные двигатели имеют свою нишу - дешевые и одноразовые летательные аппараты. В этой нише они успешно развиваются в направлении повышения частоты следования импульсов.

Классический облик ИДД - цилиндрическая камера сгорания, которая имеет плоскую или специально спрофилированную стенку, именуемую «тяговой стенкой» (рис. 2). Простота устройства ИДД - неоспоримое его достоинство. Как показывает анализ имеющихся публикаций , несмотря на многообразие предлагаемых схем ИДД, всем им свойственно использование в качестве резонансных устройств детонационных труб значительной длины и применение клапанов, обеспечивающих периодическую подачу рабочего тела.

Следует отметить, что ИДД, созданным на базе традиционных детонационных труб, несмотря на высокую термодинамическую эффективность в единичной пульсации, присущи недостатки, характерные для классических пульсирующих воздушно-реактивных двигателей, а именно:

Низкая частота (до 10 Гц) пульсаций, что и определяет относительно невысокий уровень средней тяговой эффективности;

Высокие тепловые и вибрационные нагрузки.

Рис. 2. Принципиальная схема импульсно-детонационного двигателя (ИДД)

Направление № 2 - Многотрубный ИДД. Основной тенденцией при разработках ИДД является переход к многотрубной схеме (рис. 3). В таких двигателях частота работы отдельной трубы остается низкой, но за счет чередования импульсов в разных трубах разработчики надеются получить приемлемые удельные характеристики. Такая схема представляется вполне работоспособной, если решить проблему вибраций и асимметрии тяги, а также проблему донного давления , в частности, возможных низкочастотных колебаний в донной области между трубами.

Рис. 3. Импульсно-детонационный двигатель (ИДД) традиционной схемы с пакетом детонационных труб в качестве резонаторов

Направление № 3 - ИДД с высокочастотным резонатором. Существует и альтернативное направление - широко разрекламированная в последнее время схема с тяговыми модулями (рис. 4), имеющими специально спрофилированный высокочастотный резонатор. Работы в данном направлении ведутся в НТЦ им. А. Люльки и в МАИ . Схема отличается отсутствием каких-либо механических клапанов и запальных устройств прерывистого действия.

Тяговый модуль ИДД предлагаемой схемы состоит из реактора и резонатора. Реактор служит для подготовки топливно-воздушной смеси к детонационному сгоранию, разлагая молекулы горючей смеси на химически активные составляющие. Принципиальная схема одного цикла работы такого двигателя наглядно представлена на рис. 5.

Взаимодействуя с донной поверхностью резонатора как с препятствием, детонационная волна в процессе соударения передает ей импульс от сил избыточного давления.

ИДД с высокочастотными резонаторами имеют право на успех. В частности, они могут претендовать на модернизацию форсажных камер и доработку простых ТРД, предназначенных опять же для дешевых БПЛА. В качестве примера можно привести попытки МАИ и ЦИАМ модернизировать таким образом ТРД МД-120 за счет замены камеры сгорания реактором активации топливной смеси и установкой за турбиной тяговых модулей с высокочастотными резонаторами. Пока работоспособную конструкцию создать не удалось, т.к. при профилировании резонаторов авторами используется линейная теория волн сжатия, т.е. расчеты ведутся в акустическом приближении. Динамика же детонационных волн и волн сжатия описывается совсем другим математическим аппаратом. Использование стандартных численных пакетов для расчета высокочастотных резонаторов имеет ограничение принципиального характера . Все современные модели турбулентности основаны на осреднении уравнений Навье-Стокса (базовые уравнения газовой динамики) по времени. Кроме того, вводится предположение Буссинеска, что тензор напряжения турбулентного трения пропорционален градиенту скорости. Оба предположения не выполняются в турбулентных потоках с ударными волнами, если характерные частоты сопоставимы с частотой турбулентной пульсации. К сожалению, мы имеем дело именно с таким случаем, поэтому тут необходимо либо построение модели более высокого уровня, либо прямое численное моделирование на основе полных уравнений Навье-Стокса без использования моделей турбулентности (задача, неподъемная на современном этапе).

Рис. 4. Схема ИДД с высокочастотным резонатором

Рис. 5. Схема ИДД с высокочастотным резонатором: СЗС - сверхзвуковая струя; УВ - ударная волна; Ф - фокус резонатора; ДВ - детонационная волна; ВР - волна разрежения; ОУВ - отраженная ударная волна

ИДД совершенствуются в направлении повышения частоты следования импульсов. Это направление имеет свое право на жизнь в области легких и дешевых беспилотных летательных аппаратов, а также при разработке различных эжекторных усилителей тяги.

Рецензенты:

Усков В.Н., д.т.н., профессор кафедры гидроаэромеханики Санкт-Петербургского государственного университета, математико-механический факультет, г. Санкт-Петербург;

Емельянов В.Н., д.т.н., профессор, заведующий кафедрой плазмогазодинамики и теплотехники, БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова, г. Санкт-Петербург.

Работа поступила в редакцию 14.10.2013.

Библиографическая ссылка

Булат П.В., Продан Н.В. ОБЗОР ПРОЕКТОВ ДЕТОНАЦИОННЫХ ДВИГАТЕЛЕЙ. ИМПУЛЬСНЫЕ ДВИГАТЕЛИ // Фундаментальные исследования. – 2013. – № 10-8. – С. 1667-1671;
URL: http://fundamental-research.ru/ru/article/view?id=32641 (дата обращения: 24.10.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Опытно-конструкторское бюро имени Люльки разработало, изготовило и испытало опытный образец пульсирующего резонаторного детонационного двигателя с двухстадийным сжиганием керосиновоздушной смеси. Как сообщает ИТАР-ТАСС, средняя измеренная тяга двигателя составила около ста килограммов, а длительность непрерывной работы ─ более десяти минут. До конца текущего года ОКБ намерено изготовить и испытать полноразмерный пульсирующий детонационный двигатель.

По словам главного конструктора ОКБ имени Люльки Александра Тарасова, в ходе испытаний моделировались режимы работы, характерные для турбореактивного и прямоточного двигателей. Измеренные величины удельной тяги и удельного расхода топлива оказались на 30-50 процентов лучше, чем у обычных воздушно-реактивных двигателей. В ходе экспериментов производилось многократное включение и выключение нового двигателя, а также регулирование тяги.



На основе проведенных исследований, полученных при испытании данных, а также схемно-конструкторского анализа ОКБ имени Люльки намерено предложить разработку целого семейства пульсирующих детонационных авиационных двигателей. В частности, могут быть созданы двигатели с коротким ресурсом работы для беспилотных летательных аппаратов и ракет и самолетные двигатели с крейсерским сверхзвуковым режимом полета.

В перспективе на основе новых технологий могут быть созданы двигатели для ракетно-космических систем и комбинированных силовых установок самолетов, способных выполнять полеты в атмосфере и за ее пределами.

По оценке конструкторского бюро, новые двигатели позволят увеличить тяговооруженность самолетов в 1,5-2 раза. Кроме того, при использовании таких силовых установок дальность полета или масса авиационных средств поражения могут увеличиться на 30-50 процентов. При этом удельный вес новых двигателей будет в 1,5-2 раза меньше аналогичного показателя обычных реактивных силовых установок.

О том, что в России ведутся работы по созданию пульсирующего детонационного двигателя, сообщалось в марте 2011 года. Об этом заявил тогда Илья Федоров, управляющий директор научно-производственного объединения «Сатурн», в состав которого входит ОКБ имени Люльки. О каком именно типе детонационного двигателя шла речь, Федоров не уточнил.

В настоящее время известны три вида пульсирующих двигателей ─ клапанные, бесклапанные и детонационные. Принцип работы этих силовых установок заключается в периодической подаче в камеру сгорания топлива и окислителя, где происходит воспламенение топливной смеси и истечение продуктов сгорания из сопла с образованием реактивной тяги. Отличие от обычных реактивных двигателей заключается в детонационном горении топливной смеси, при котором фронт горения распространяется быстрее скорости звука.

Пульсирующий воздушно-реактивный двигатель был изобретен еще в конце XIX века шведским инженером Мартином Вибергом. Пульсирующий двигатель считается простым и дешевым в изготовлении, однако из-за особенностей горения топлива ─ малонадежным. Впервые новый тип двигателя был использован серийно во время Второй мировой войны на немецких крылатых ракетах Фау-1. На них устанавливался двигатель Argus As-014 компании Argus-Werken.

В настоящее время несколько крупных оборонных фирм мира занимаются исследованиями в области создания высокоэффективных пульсирующих реактивных двигателей. В частности, работы ведут французская компания SNECMA и американские General Electric и Pratt & Whitney. В 2012 году Научно-исследовательская лаборатория ВМС США объявила о намерении разработать спиновый детонационный двигатель, который должен будет заменить на кораблях обычные газотурбинные силовые установки.

Научно-исследовательская лаборатория (NRL) ВМС США намерена разработать ротационный, или спиновый, детонационный двигатель (Rotating Detonation Engine, RDE), который в перспективе сможет заменить на кораблях обычные газотурбинные силовые установки. Как сообщает NRL, новые двигатели позволят военным снизить потребление топлива, одновременно повысив энергетическую отдачу силовых установок.

В настоящее время ВМС США используют 430 газотурбинных двигателей (ГТД) на 129 кораблях. Ежегодно они потребляют топлива на два миллиарда долларов. По оценке NRL, благодаря RDE военные смогут экономить на топливе до 400 миллионов долларов в год. RDE смогут вырабатывать на десять процентов больше энергии, чем обычные ГТД. Прототип RDE уже создан, однако когда такие двигатели начнут поступать на флот, пока неизвестно.

В основу RDE легли наработки NRL, полученные при создании пульсирующего детонационного двигателя (Pulse Detonation Engine, PDE). Работа таких силовых установок основана на устойчивом детонационном горении топливной смеси.

Спиновые детонационные двигатели отличаются от пульсирующих тем, что детонационное горение топливной смеси в них происходит непрерывно ─ фронт горения перемещается в кольцевой камере сгорания, в которой топливная смесь постоянно обновляется.

© 2024 bugulma-lada.ru -- Портал для владельцев автомобилей