Catalizatori de peroxid de hidrogen în motoare cu rachete. Instalații de motor la peroxid de hidrogen pentru sateliți mici. Patrimoniul nazist în Anglia ...

principalul / Achiziționați \\

Fără îndoială, motorul este cea mai importantă parte a rachetei și una dintre cele mai complexe. Sarcina motorului - amestecați componentele combustibilului, asigurați-vă arderea și la viteză mare pentru a arunca gazul obținut în timpul procesului de combustie într-o direcție dată, creând pofta reactivă. În acest articol, vom lua în considerare motoarele chimice utilizate acum în tehnicile de rachete. Există mai multe dintre speciile lor: combustibil solid, lichid, hibrid și lichid o componentă.


Orice motor cu rachete este alcătuit din două părți principale: o cameră de combustie și duză. Cu o cameră de combustie, cred că totul este clar - acesta este un anumit volum închis, în care arderea combustibilului. O duză este destinată overclockingului gazului în procesul de combustie de gaze până la viteza supersonică într-o direcție specificată. Duza este formată dintr-o confuzie, un canal de critică și difuzor.

Confucos este o pâlnie care colectează gaze din camera de combustie și le îndreaptă spre canalul critic.

Critica este cea mai îngustă parte a duzei. În ea, gazul accelerează la viteza de sunet datorită presiunii ridicate din confuzie.

Diffuzorul este o parte extinsă a duzei după critici. Este nevoie de o scădere a temperaturii de presiune și gaze, datorită căreia gazul primește o accelerație suplimentară până la viteza supersonică.

Și acum vom trece prin toate tipurile de motoare majore.

Să începem cu un simplu. Cel mai simplu dintre designul său este RDTT - un motor cu rachete pe combustibil solid. De fapt, este un butoi încărcat de un amestec solid de combustibil și oxidare având duza.

Camera de combustie dintr-un astfel de motor este canalul în încărcarea combustibilului, iar arderea are loc în întreaga suprafață a acestui canal. Adesea, pentru a simplifica realimentarea motorului, sarcina este făcută din verificatoare de combustibil. Apoi, arderea are loc și pe suprafața gâtului de dame.

Pentru a obține o dependență diferită de împingere din timp, se aplică diferite secțiuni transversale Canal:

RDTT. - cea mai veche viziune a motorului de rachete. El a fost inventat în China antică, dar până în prezent găsește utilizarea atât în \u200b\u200brachete de luptă, cât și în tehnologia spațială. De asemenea, acest motor datorat simplității sale este utilizat în mod activ în iluminarea rachetelor amator.

Prima navă spațială americană de mercur a fost echipată cu șase RDTT:

Trei nave mici de la racheta purtătoare după separarea de ea și trei mari - inhibă-o pentru îndepărtarea orbitei.

Cel mai puternic RDTT (și, în general, cel mai puternic motor de rachete din istorie) este acceleratorul lateral al sistemului de transfer spațial, care a dezvoltat puterea maximă de 1400 de tone. Sunt două dintre acești acceleratori care au dat un astfel de post de foc spectaculos la începutul navelor. Acest lucru este clar vizibil, de exemplu, la începutul pornirii lui ShutTok Atlantis pe 11 mai 2009 (Misiunea STS-125):

Aceleași acceleratori vor fi utilizați în noua rachetă SLS, care va aduce orbita noului navă americană. Acum puteți vedea înregistrări de la teste de accelerator bazate pe sol:

RDTT este instalat și în sistemele de salvare de urgență destinate unei nave spațiale printr-o rachetă în caz de accident. Aici, de exemplu, testele CAC a navei de mercur pe 9 mai 1960:

Pe navele spațiale, Uniunea în afară de SAS sunt instalate motoare de aterizare moale. Acesta este, de asemenea, un RDTT, care lucrează împarte de o secundă, dând un impuls puternic, stingerea vitezei reducerii navei aproape la zero înainte de atingerea suprafeței Pământului. Funcționarea acestor motoare este vizibilă la intrarea aterizării Uniunii Navei TMA-11M pe 14 mai 2014:

Principalul dezavantaj al RDTT este imposibilitatea de a controla povara și imposibilitatea de a relua motorul după ce se oprește. Da, iar oprirea motorului în cazul RDTT asupra faptului de oprire nu este: motorul se oprește să funcționeze datorită capătului combustibilului, fie, dacă este necesar, opriți-l mai devreme, tăierea Împingerea este făcută: o boală specială este fotografia coperta Motorul și gazele încep să iasă din capete, zeroând pofta.

Vom lua în considerare următoarele motor hibrid . Caracteristica sa este că componentele combustibilului utilizate sunt în diferite stări agregate. Cel mai adesea utilizat combustibil solid și oxidant lichid sau gaz.

Aici, cum arată un test de bancă al unui astfel de motor:

Acest tip de motor care este aplicat pe prima navetă spațială spațială privată.
Spre deosebire de RDTT GD, puteți reporni și regla. Cu toate acestea, nu a fost fără defecte. Din cauza camerei mari de combustie, PD-ul este neprofitabil pentru a pune pe rachete mari. De asemenea, UHD este înclinat la "Hard Start" atunci când o mulțime de oxidant sa acumulat în camera de combustie și când ignorați motorul dă un impuls mare de împingere într-un timp scurt.

Ei bine, ia în considerare acum cele mai utilizate tipuri de motoare cu rachete din astronautică. aceasta Edr. - motoare cu rachete lichide.

În camera de combustie, EDD amestecat și ard două lichide: combustibil și agent de oxidare. Trei cupluri de combustibil și oxidativ sunt utilizate în rachetele spațiale: oxigen lichid + kerosen (rachetă SOYUZ), hidrogen lichid + oxigen lichid (a doua și a treia etapă a rachetei Saturn-5, a doua etapă a Changzhin-2, naveta spațială) și dimetilhidrazină asimetrică + nitroxid de nitroxid (proton de rachete de azot și prima etapă Changzhin-2). Există, de asemenea, teste ale unui nou tip de metan lichid.

Beneficiile EDD sunt greutatea redusă, capacitatea de a reglementa împingerea pe o gamă largă (ticălos), posibilitatea lansărilor multiple și a unui impuls specific mai mare comparativ cu motoarele altor tipuri.

Principalul dezavantaj al acestor motoare este complexitatea uluitoare a designului. Acest lucru este în schema mea, totul arată și, de fapt, atunci când proiectăm EDD, este necesar să se ocupe de o serie de probleme: necesitatea unei bune amestecări a componentelor combustibilului, complexitatea menținerii presiunii ridicate în camera de combustie, inegală Combustibilul combustibilului, încălzirea puternică a camerei de ardere și a pereților duzei, complexitatea cu aprindere, expunerea la coroziune la oxidantul de pe pereții camerei de combustie.

Pentru a rezolva toate aceste probleme, multe complexe și nu foarte soluții de inginerieDe ce easpele arata ca un coșmar de instalații sanitare, de exemplu, acest RD-108:

Camerele de combustie și duze sunt vizibile în mod clar, dar acordați atenție câte tuburi, agregate și fire! Și toate acestea sunt necesare pentru o funcționare stabilă și fiabilă a motorului. Există o unitate turbocabilă pentru furnizarea de combustibil și agent de oxidare în camerele de combustie, un generator de gaze pentru o unitate de turbocomparcabil, tricouri de combustie și duze, tuburi de inel pe duze pentru a crea o perdea de răcire din combustibil, duza pentru resetarea gazelor de gaz și drenaj.

Vom examina lucrul în detaliu într-unul din următoarele articole, dar încă mai mergem la ultimul tip de motoare: o singură componentă.

Funcționarea unui astfel de motor se bazează pe descompunerea catalitică a peroxidului de hidrogen. Cu siguranță mulți dintre voi vă amintiți experiența școlii:

Școala utilizează farmacie trei procente peroxid, dar reacția utilizând 37% peroxid:

Se poate observa cum jetul de abur (într-un amestec cu oxigen, desigur), este văzut din gâtul balonului. Decât nu motor turboreactor?

Motoarele la peroxid de hidrogen sunt utilizate în sistemele de orientare a navelor spațiale, când nu este necesară valoarea mare a împingătorului, iar simplitatea proiectului motorului și masa sa mică este foarte importantă. Desigur, concentrația de peroxid de hidrogen utilizată este departe de 3% și nici măcar 30%. 100% peroxid concentrat dau un amestec de oxigen cu vapori de apă în timpul reacției, încălzit la o jumătate de mie de grade, ceea ce creează presiune ridicata În camera de combustie și rata ridicată a expirării gazelor de la duză.

Simplitatea designului motorului cu o singură componentă nu a putut atrage atenția utilizatorilor de rachete amatori. Iată un exemplu al unui motor cu un singur component amator.

Peroxidul de hidrogen H2O2 este un lichid incolor transparent, mai vâscos decât apa, cu o miros caracteristic, deși slab. Peroxidul de hidrogen anhidru este dificil de obținut și depozitat și este prea scump pentru utilizare ca combustibil de rachetă. În general, costul ridicat este unul dintre principalele dezavantaje ale peroxidului de hidrogen. Dar, în comparație cu alți agenți de oxidare, este mai convenabil și mai puțin periculos în circulație.
Propunerea de peroxid la descompunerea spontană este în mod tradițional exagerată. Deși am observat o scădere a concentrației de la 90% la 65% în doi ani de depozitare în sticle de polietilenă de litri la temperatura camerei, dar în volume mari și într-un recipient mai adecvat (de exemplu, într-un butoi de 200 litri de aluminiu suficient de pur ) Rata de descompunere de 90% Packsi ar fi mai mică de 0,1% pe an.
Densitatea peroxidului de hidrogen anhidru depășește 1450 kg / m3, care este mult mai mare decât oxigenul lichid și puțin mai mică decât cea a oxidanților acidului azotic. Din păcate, impuritățile cu apă reduc rapid, astfel încât soluția de 90% are o densitate de 1380 kg / m3 la temperatura camerei, dar este încă un indicator foarte bun.
Peroxidul din EDD poate fi, de asemenea, utilizat ca combustibil unitar și ca agent de oxidare - de exemplu, într-o pereche cu kerosen sau alcool. Nici kerosenul, nici alcoolul nu este propunerea de peroxid și pentru a asigura aprinderea în combustibil, este necesar să se adauge un catalizator pentru descompunerea peroxidului - atunci căldura eliberată este suficientă pentru aprindere. Pentru alcool, un catalizator adecvat este manganul acetat (II). Pentru kerosen, de asemenea, există aditivi adecvați, dar compoziția lor este păstrată secretă.
Utilizarea peroxidului ca combustibil unitar este limitată la caracteristicile sale de energie relativ scăzute. Astfel, impulsul specific realizat în vid pentru peroxid de 85% este de numai aproximativ 1300 ... 1500 m / s (pentru diferite grade de expansiune) și pentru 98% - aproximativ 1600 ... 1800 m / s. Cu toate acestea, peroxidul a fost aplicat mai întâi de americani pentru orientarea aparatului de coborâre a navei spațiale de mercur, apoi, cu același scop, designerii sovietici de pe Swior Soyk QC. În plus, peroxidul de hidrogen este utilizat ca combustibil auxiliar pentru unitatea TNA - pentru prima dată pe racheta V-2 și apoi pe "descendenții", până la P-7. Toate modificările "Sexok", inclusiv cele mai moderne, folosesc încă peroxidul de a conduce TNA.
Ca oxidant, peroxidul de hidrogen este eficient cu diverse combustibili. Deși oferă un impuls specific mai mic, mai degrabă decât oxigen lichid, dar atunci când se utilizează o peroxid de concentrație ridicată, valorile UI depășesc cele pentru oxidanții de acid azotic cu același inflamabil. Dintre toate rachetele de transport spațial, doar un peroxid folosit (asociat cu kerosen) - engleză "arrow negru". Parametrii motoarelor sale au fost modest - UI de măsurare a motorului, puțin depășit 2200 m / s la pământ și 2500 m / s în vid ", deoarece numai concentrația de 85% a fost utilizată în această rachetă. Acest lucru sa făcut datorită faptului că pentru a asigura peroxidul de auto-aprindere descompus pe un catalizator de argint. Peroxidul mai concentrat ar topi argintul.
În ciuda faptului că interesul din peroxid din timp la timp este activat, perspectivele rămân înfundate. Deci, deși Sovietul EDR RD-502 ( vaporii de combustibil - peroxid plus pentabran) și a demonstrat un impuls specific de 3680 m / s, a rămas experimental.
În proiectele noastre, ne concentrăm asupra peroxidului, deoarece motoarele de pe ea se dovedesc a fi mai "reci" decât motoare similare Cu același UI, dar pe alți combustibili. De exemplu, produsele de combustie ale combustibililor "caramel" au aproape 800 ° cu o temperatură mai mare, cu același UI. Acest lucru se datorează unei cantități mari de apă în produsele de reacție peroxid și, ca rezultat, cu o greutate moleculară medie scăzută a produselor de reacție.

1 .. 42\u003e .. \u003e\u003e Următor
Temperatura înghețului de alcool scăzut vă permite să o utilizați într-o gamă largă de temperaturi ambientale.
Alcoolul este produs în cantități foarte mari și nu este un deficitar inflamabil. Alcoolul are un impact agresiv asupra materialelor structurale. Acest lucru vă permite să aplicați materiale relativ ieftine pentru rezervoarele de alcool și autostrăzile.
Alcoolul metilic poate servi ca înlocuitor al alcoolului etilic, ceea ce oferă o calitate oarecum mai gravă cu oxigen. Alcoolul metilic este amestecat cu etil în orice proporție, ceea ce face posibilă utilizarea acesteia cu o lipsă de alcool etilic și se adaugă la un glisier într-un combustibil. Combustibilul bazat pe oxigenul lichid este utilizat aproape exclusiv în rachete cu rază lungă de acțiune, permițând și chiar, datorită unei greutăți mai mari, care necesită realimentare cu rachete cu componente la locul de pornire.
Apă oxigenată
H2O2 peroxid de hidrogen (adică, concentrație de 100%) în tehnica nu se aplică, deoarece este un produs extrem de instabil capabil de o descompunere spontană, transformând cu ușurință într-o explozie sub influența oricăror influențe externe aparent minore: impact, iluminat, Cea mai mică poluare a substanțelor organice și a impurităților unor metale.
În tehnologia Rocket, "a aplicat soluții mai rezistente la capăt (cele mai des 80 ° C) de soluții de hidrogen în apă. Pentru a crește rezistența la peroxidul de hidrogen, se adaugă cantități mici de substanțe împiedică descompunerea spontană (de exemplu, acidul fosforic). Utilizarea peroxidului de hidrogen 80 "necesită în prezent numai măsuri de precauție convenționale necesare atunci când manipulează agenți de oxidare puternici. Peroxid de hidrogen o astfel de concentrație este transparent, lichid ușor albastru cu o temperatură de congelare -25 ° C.
Peroxid de hidrogen Când este descompus pe perechi de oxigen și apă, se evidențiază căldura. Această eliberare de căldură este explicată prin faptul că căldura formării peroxidului este de 45,20 KCAL / G-MOL,
126
Gl. IV. Motoarele cu rachete de combustibil
timpul de formare a apei este egal cu 68,35 kcal / g-mol. Astfel, cu descompunerea peroxidului conform formulei H2O2 \u003d --H2O + V2O0, energia chimică este evidențiată, diferența egală 68,35-45,20 \u003d 23,15 KCAL / G-MOL sau 680 kcal / kg.
Concentrația de peroxid de hidrogen 80E / OO are capacitatea de a se descompune în prezența catalizatorilor cu eliberare de căldură în cantitatea de 540 kcal / kg și cu eliberarea de oxigen liber, care poate fi utilizată pentru oxidarea combustibilului. Peroxidul de hidrogen are o greutate specifică semnificativă (1,36 kg / l pentru concentrații de 80%). Este imposibil să se utilizeze peroxid de hidrogen ca un răcitor, deoarece atunci când este încălzit, nu se fierbe, dar se descompune imediat.
Oțel inoxidabil și foarte curat (cu un conținut de impurități de până la 0,51%) Aluminiu poate servi ca materiale pentru rezervoare și conducte de motoare care funcționează pe peroxid. Utilizarea complet inacceptabilă a cuprului și a altor metale grele. Cuprul este un catalizator puternic care contribuie la descompunerea hidrogenului Peroxy. Unele tipuri de materiale plastice pot fi aplicate pentru garnituri și sigilii. Ingheșarea peroxidului de hidrogen concentrat pe piele provoacă arsuri grele. Substanțe organice atunci când peroxidul de hidrogen cade pe ele se aprinde.
Combustibil bazat pe peroxid de hidrogen
Pe baza peroxidului de hidrogen, au fost create două tipuri de combustibili.
Combustibilul primului tip este combustibilul unui furaje separate, în care oxigenul eliberat la descompunerea peroxidului de hidrogen este utilizat pentru arderea combustibilului. Un exemplu este combustibilul utilizat în motorul aeronavei interceptorului descris mai sus (p. 95). Acesta a constat dintr-un peroxid de hidrogen de concentrație de 80% și un amestec de hidrat hidrat de hidrazină (N2H4 H2O) cu alcool metilic. Când se adaugă catalizatorul special, acest combustibil devine auto-aprins. O valoare calorică relativ scăzută (1020 kcal / kg), precum și greutatea moleculară mică a produselor de combustie, determină temperatura scăzută de combustie, care facilitează funcționarea motorului. Cu toate acestea, datorită valorii calorice scăzute, motorul are o dorință specifică (190 kgc / kg).
Cu apă și alcool, peroxidul de hidrogen poate forma amestecuri triple relativ explozive, care sunt un exemplu de combustibil cu o componentă. Valoarea calorică a unor astfel de amestecuri rezistente la explozie este relativ mică: 800-900 kcal / kg. Prin urmare, ca combustibil principal pentru EDD, acestea vor fi aplicate cu greu. Astfel de amestecuri pot fi utilizate în abur exterior.
2. Combustibil modern Motoare cu rachete
127
Reacția descompunerii peroxidului concentrat, așa cum sa menționat deja, este utilizată pe scară largă în tehnologia rachetelor pentru a obține o vapori, care este o fluorură de lucru a turbinei la pompare.
Motoare cunoscute în care căldura descompunerii peroxidului a servit pentru a crea o forță de împingere. Tracțiunea specifică a acestor motoare este scăzută (90-100 kgc / kg).
Pentru descompunerea peroxidului, se utilizează două tipuri de catalizatori: lichid (soluție permanganată de potasiu KMNO4) sau solidă. Aplicarea acestuia din urmă este mai preferată, deoarece face ca un sistem de catalizator lichid excesiv la reactor.

ÎN 1818 Chimist francez L. J. Tenar. a deschis "apa oxidată". Mai târziu, această substanță a primit un nume apă oxigenată. Densitatea sa este 1464,9 kg / metru cubic. Deci, substanța rezultată are o formulă H 2 O 2, endotermic, rotiți oxigenul în formă activă cu eliberare ridicată la căldură: H202\u003e H20 + 0,5 O 2 + 23,45 KCAL.

Chimiștii știau de asemenea despre proprietate apă oxigenată ca oxidare: soluții H 2 O 2 (denumită în continuare " peroxid") a aprins substanțe inflamabile, astfel încât acestea să nu reușească întotdeauna. Prin urmare, aplicați peroxid în viata reala ca substanță energetică și încă nu necesită un oxidant suplimentar, un inginer a venit în minte Helmut Walter. din oras Chilă. Și în special pe submarine, unde trebuie luată în considerare fiecare gram de oxigen, mai ales că a mers 1933.Iar cotul fascist a luat toate măsurile pentru a se pregăti pentru război. Lucrați imediat cu peroxid au fost clasificate. H 2 O 2 - Produsul este instabil. Walter a găsit produse (catalizatori) care au contribuit cu o descompunere și mai rapidă Peroxy.. Reacția de scindare a oxigenului ( H 2 O 2 = H 2 O. + O 2.) Am ajuns imediat la sfârșit. Cu toate acestea, a fost nevoie să "scapi" de la oxigen. De ce? Faptul este că peroxid Cea mai bogată conexiune la O 2. Aproape 95% Din greutatea substanței. Și din moment ce oxigenul atomic este distins inițial, atunci să nu-l folosească ca o oxidant activ a fost pur și simplu inconvenient.

Apoi, în turbină, unde a fost aplicată peroxid, combustibil organic, precum și apa, deoarece căldura a subliniat destul de mult. Acest lucru a contribuit la creșterea puterii motorului.

ÎN 1937 Anul a trecut testele de succes ale instalațiilor cu turbină și în 1942. Primul submarin a fost construit F-80.care a fost dezvoltată sub viteza apei 28.1 Noduri (52.04 km / oră). Comandamentul german a decis să construiască 24 submarin care a trebuit să aibă două centrale electrice Puterea fiecăruia 5000 hp.. Ei consumau 80% soluţie Peroxy.. În Germania, pregătirea capacității de eliberare 90.000 de tone de peroxid în anul. Cu toate acestea, un sfârșit inglorat a venit pentru "Reichul Millennial" ...

Trebuie remarcat faptul că în Germania peroxid a început să aplice în diferite modificări ale aeronavelor, precum și pe rachete Fow-1. și Fow-2.. Știm că toate aceste lucrări nu au putut schimba cursul evenimentelor ...

În Uniunea Sovietică lucrează cu peroxid De asemenea, am efectuat în interesul flotei subacvatice. ÎN 1947 Anul un membru valabil al Academiei de Științe URSS B. S. STECHINKIN.care au sfătuit specialiști în motoarele reactive lichide, care apoi numite Zhdiști, la Institutul Academiei de Științe Artilerie, au dat sarcina viitorului academician (și apoi un inginer) Varșovia I. L. Face motorul pe Peroxy.propus de academician E. A. Chudakov.. Pentru a face acest lucru, serial motoare diesel Submarine ca " Ştiucă"Și practic" binecuvântare "la locul de muncă sa dat sine Stalin.. Acest lucru a făcut posibilă forțarea dezvoltării și a obține un volum suplimentar la bordul barcii, unde ați putea pune torpile și alte arme.

Funcționează S. peroxid Au fost efectuate academicii Stacky., Chudakov. Și Varșovia într-un timp foarte scurt. Inainte de 1953 ani, conform informațiilor disponibile, a fost echipat 11 submarin. Spre deosebire de lucrări cu peroxidCeea ce a fost realizat de SUA și Anglia, submarinele noastre nu au lăsat nici o urmă în spatele lor, în timp ce turbina cu gaz (SUA și Anglia) au avut o buclă de demasking cu bule. Dar punctul în introducerea internă peroxy. și utilizarea sa pentru submarin Khrushchev.: Țara sa mutat la locul de muncă cu submarine nucleare. Și cel mai apropiat puternic H 2.- tăiat pe resturi metalice.

Cu toate acestea, ceea ce avem în "reziduul uscat" cu peroxid? Se pare că trebuie să fie consecventă undeva, iar apoi rezervoarele de alimentare cu combustibil (tancurile) mașinilor. Nu este întotdeauna convenabil. Prin urmare, ar fi mai bine să o primiți direct la bordul mașinii și chiar mai bine înainte de injectare în cilindru sau înainte de a servi pe turbină. În acest caz, ar fi garantat securitate completă Toate lucrările. Dar ce fel de fluide sursă este nevoie pentru ao obține? Dacă luați niște acid și peroxid, Să spunem Bariu ( Va 2.) Acest proces devine foarte incomod pentru utilizarea direct la bordul aceluiași "Mercedes"! Prin urmare, acordați atenție apa simplă - H 2 O.Fotografiile! Se pare că este pentru obținerea Peroxy. Puteți să o utilizați în siguranță în siguranță! Și trebuie doar să umpleți tancurile cu apă obișnuită și puteți merge pe drum.

Singura rezervare este: În acest proces, oxigenul atomic se formează din nou (amintiți-vă reacția cu care sa ciocnit Walter.), Dar aici este rezonabil pentru el cu el, așa cum sa dovedit. La utilizarea corectă, este necesară o emulsie de apă-combustibil, ca parte a cărei parte este suficientă pentru a avea cel puțin 5-10% Unele combustibil de hidrocarburi. Același ulei de combustibil se poate aborda, dar chiar și atunci când se utilizează, fracțiunile de hidrocarburi vor oferi flegmatizarea oxigenului, adică vor intra în reacție cu el și vor da un impuls suplimentar, excluzând posibilitatea unei explozii necontrolate.

Pentru toate calculele, cavitația vine în dreapta proprie, formarea bulelor active care pot distruge structura moleculei de apă, pentru a evidenția gruparea hidroxilului ESTE EL și să se conecteze la același grup pentru a obține molecula dorită Peroxy. H 2 O 2.

Această abordare este foarte benefică în orice punct de vedere, pentru că permite excluderea procesului de fabricație. Peroxy. În afara obiectului de utilizare (adică face posibilă crearea acestuia direct în motor combustie interna). Este foarte profitabil, deoarece elimină etapele de realimentare și depozitare individuală H 2 O 2. Se pare că numai la momentul injectării este formarea compusului de care avem nevoie și, ocolind procesul de stocare, peroxid Intră în muncă. Și în ghivecele aceleiași mașini poate exista o emulsie cu combustibil cu apă cu un procent slab de combustibil de hidrocarburi! Aici frumusețea ar fi! Și nu ar fi absolut ciudat dacă un litru de combustibil a avut un preț chiar și în 5 Dolari americani. În viitor, puteți merge la tipul de combustibil solid de cărbune de piatră, iar benzina este sintetizată calm. Cărbunele este încă suficient timp de câteva sute de ani! Numai Yakutia On adâncimea superficială Stochează miliarde de tone de această fosilă. Aceasta este o regiune uriașă limitată la fundul firului Bam, granița nordică din care se află departe de râurile Aldan și mai ...

dar Peroxy. Conform schemei descrise, acesta poate fi preparat din orice hidrocarburi. Cred că cuvântul principal în această chestiune rămâne pentru oamenii de știință și inginerii noștri.

Peroxid de hidrogen H202 - Lichid incolor transparent, semnificativ mai vâscos decât apa, cu caracteristic, deși miros slab. Peroxidul de hidrogen anhidru este dificil de obținut și depozitat și este prea scump pentru utilizare ca combustibil de rachetă. În general, costul ridicat este unul dintre principalele dezavantaje ale peroxidului de hidrogen. Dar, în comparație cu alți agenți de oxidare, este mai convenabil și mai puțin periculos în circulație.
Propunerea de peroxid la descompunerea spontană este în mod tradițional exagerată. Deși am observat o scădere a concentrației de la 90% la 65% în doi ani de depozitare în sticle de polietilenă de litri la temperatura camerei, dar în volume mari și într-un recipient mai adecvat (de exemplu, într-un butoi de 200 litri de aluminiu suficient de pur ) Rata de descompunere de 90% Packsi ar fi mai mică de 0,1% pe an.
Densitatea peroxidului de hidrogen anhidru depășește 1450 kg / m3, care este semnificativ mai mare decât în \u200b\u200boxigenul lichid și puțin mai mică decât cea a oxidanților de acid azotic. Din păcate, impuritățile de apă reduc rapid acest lucru, astfel încât soluția de 90% are o densitate de 1380 kg / m 3 la temperatura camerei, dar este încă un indicator foarte bun.
Peroxidul din EDD poate fi, de asemenea, utilizat ca combustibil unitar și ca agent de oxidare - de exemplu, într-o pereche cu kerosen sau alcool. Nici kerosenul, nici alcoolul nu este propunerea de peroxid și pentru a asigura aprinderea în combustibil, este necesar să se adauge un catalizator pentru descompunerea peroxidului - atunci căldura eliberată este suficientă pentru aprindere. Pentru alcool, un catalizator adecvat este manganul acetat (ii). Pentru kerosen, de asemenea, există aditivi adecvați, dar compoziția lor este păstrată secretă.
Utilizarea peroxidului ca combustibil unitar este limitată la caracteristicile sale de energie relativ scăzute. Astfel, impulsul specific realizat în vid pentru peroxid de 85% este de numai aproximativ 1300 ... 1500 m / s (pentru diferite grade de expansiune) și pentru 98% - aproximativ 1600 ... 1800 m / s. Cu toate acestea, peroxidul a fost aplicat mai întâi de americani pentru orientarea aparatului de coborâre a navei spațiale de mercur, apoi, cu același scop, designerii sovietici de pe Swior Soyk QC. În plus, peroxidul de hidrogen este utilizat ca combustibil auxiliar pentru unitatea TNA - pentru prima dată pe racheta V-2 și apoi pe "descendenții", până la P-7. Toate modificările "Sexok", inclusiv cele mai moderne, folosesc încă peroxidul de a conduce TNA.
Ca oxidant, peroxidul de hidrogen este eficient cu diverse combustibili. Deși oferă un impuls specific mai mic, mai degrabă decât oxigen lichid, dar atunci când se utilizează o peroxid de concentrație ridicată, valorile UI depășesc cele pentru oxidanții de acid azotic cu același inflamabil. Dintre toate rachetele de transport spațial, doar un peroxid folosit (asociat cu kerosen) - engleză "arrow negru". Parametrii motoarelor sale au fost modest - UI de măsurare a motorului, puțin depășit 2200 m / s la pământ și 2500 m / s în vid ", deoarece numai concentrația de 85% a fost utilizată în această rachetă. Acest lucru sa făcut datorită faptului că pentru a asigura peroxidul de auto-aprindere descompus pe un catalizator de argint. Peroxidul mai concentrat ar topi argintul.
În ciuda faptului că interesul din peroxid din timp la timp este activat, perspectivele rămân înfundate. Deci, deși șocul sovietic al RD-502 (perechea de combustibil - peroxid plus pentabran) și a demonstrat impulsul specific de 3680 m / s, acesta a rămas experimental.
În proiectele noastre, ne concentrăm asupra peroxidului, deoarece motoarele de pe ea se dovedesc a fi mai "reci" decât motoarele similare cu același UI, dar pe alți combustibili. De exemplu, produsele de combustie ale combustibililor "caramel" au aproape 800 ° cu o temperatură mai mare, cu același UI. Acest lucru se datorează unei cantități mari de apă în produsele de reacție peroxid și, ca rezultat, cu o greutate moleculară medie scăzută a produselor de reacție.

© 2021 BUGULMA-LADA.RU - Portal pentru proprietarii de mașini