Газова динамика на резонансни изпускателни тръби. Mashkur mahmoud a. Математически модел на газови динамика и топлообменни процеси в приемните и изпускателните системи на двигателя GAZ динарни процеси в изпускателния тракт на кораба

основното / Двигател
1

Тази статия обсъжда оценката на ефекта на резонатора върху пълненето на двигателя. В примера на примера се предлага резонатор - по обем, равен на цилиндъра на двигателя. Геометрията на всмукателния тракт заедно с резонатора е внасяна в програмата за разпръскване. Беше извършена математическа модификация, като се вземат предвид всички свойства на движещия се газ. За да се оцени скоростта на потока през входящата система, оценките на скоростта на потока в системата и относителното налягане на въздуха в клапанния процеп, се извършва компютърна симулация, която показва ефективността на използването на допълнителен капацитет. Оценява се оценка на скоростта на потока през клапанната пропаст, скоростта на потока, потока, налягането и плътността на потока за стандартната, модернизирана и всмукателна система с рексид. В същото време масата на входящия въздух се увеличава, скоростта на потока на потока се намалява и плътността на въздуха влиза в цилиндъра увеличава, което е благоприятно отразено върху изходната телевизионна телевизия.

входящ тракт

резонатор

пълнене на цилиндър

математическо моделиране

надстроен канал.

1. Jemobov L. A., Dydykin A. M. Математическо моделиране на процесите на газообменни DVS: Монография. Н.н.: NGSHA, 2007.

2. ДИДИКА А. М., Зилобов Л. А. Газодинамична изследвания на DVS Методи за числено симулация // Трактори и селскостопански машини. 2008. № 4. стр. 29-31.

3. Pritr D. M., Turkish V. A. Аеромеханиката. M.: Oborongiz, 1960.

4. HEILOV M. A. Изчислено колебание под налягане в абсорбиращия тръбен двигател вътрешно горене // tr. Cyam. 1984. № 152. стр.64.

5. Sonkin V. I. Изследване на въздушния поток през клапанната пропаст // TR. НАС. 1974. Брой 149. Стр.21-38.

6. Самски А. А., Попов Ю. P. Методи за разлика за решаване на проблемите на газовата динамика. М.: Наука, 1980. Стр.352.

7. RUDOY B. P. Приложна нестационарна газова динамика: урок. UFA: Институт за авиация на САЩ, 1988. Стр.184.

8. Маливанов М. В., кхмелев г н. към въпроса за развитието на математически и софтуер Изчисляване на газо-динамични процеси в DVS: материали на международната научна и практическа конференция IX. Владимир, 2003. стр. 213-216.

Мащабът на въртящия момент на двигателя е пропорционален на масата на въздуха, приписвана на честотата на въртене. Увеличаването на пълненето на цилиндъра на бензиновия двигател, чрез модернизиране на пътя на всмукване, ще доведе до увеличаване на налягането на края на приема, подобряване на образуването на смесване, увеличаване на техническите и икономическите показатели на експлоатацията на двигателя и намаляване в токсичността на отработените газове.

Основните изисквания за входната пътека са за осигуряване на минимална резистентност към входа и равномерното разпределение на горимата смес през цилиндрите на двигателя.

Осигуряването на минималната резистентност към входа може да бъде постигната чрез елиминиране на грапавостта на вътрешните стени на тръбопроводите, както и остри промени в посоката на потока и елиминират внезапните теглилки и разширения на трака.

Значителен ефект върху пълнежа на цилиндъра осигурява различни видове тласък. Най-простият вид превъзходен е да се използва динамиката на входящия въздух. Голям обем на приемника частично създава резонансни ефекти в определен диапазон на въртене, което води до подобряване на пълнене. Въпреки това, те имат, като резултат динамични недостатъци, например отклонения в състава на сместа с бърза промяна в товара. Почти идеалният поток на въртящия момент гарантира, че входящата тръба превключва, в която, например, в зависимост от товара на двигателя, скоростта на въртене и положението на дросела са възможни вариации:

Дължината на пулсационната тръба;

Превключвате между пулсационни тръби с различна дължина или диаметър;
- селективно изключване на отделна тръба от един цилиндър в присъствието на голямо количество от тях;
- превключване на обема на приемника.

В резонансната горната част на цилиндрова група с един и същ интервал на флагела прикрепете късите тръби към резонансен приемник, които са свързани чрез резонансни тръби с атмосферата или със събирателния приемник, действащ като резонатор на Gölmgolts. Това е сферичен съд с отворена врата. Въздухът на шията е осцилиращата маса, а обемът на въздуха в съда играе ролята на еластичен елемент. Разбира се, такова разделяне е вярно само приблизително, тъй като някои от въздуха в кухината имат инерционна резистентност. Въпреки това, с достатъчно голяма стойност на зоната на отваряне към площта на напречното сечение на кухината, точността на такова приближение е доста задоволителна. Основната част от кинетичната осцилационна енергия е концентрирана в шията на резонатора, където осцилаторната скорост на въздушните частици има най-голяма стойност.

Между дросела и цилиндъра е установена резонатор между дросела и цилиндъра. Тя започва да действа, когато дроселът е достатъчно покрит, така че нейната хидравлична резистентност да стане съпоставима с съпротивлението на резонаторния канал. Когато буталото се движи надолу, горимата смес влиза в цилиндъра на двигателя не само от под дросела, но и от резервоара. С намаляване на вакуума, резонаторът започва да изсмуква горивата смес. Това ще следва същата част и доста голяма, обратна изхвърляне.
Статията анализира движението на потока в всмукателния канал на 4-инсултен бензинов двигател на честотата на въртене на коляновия вал върху примера на двигателя VAZ-2108 при скоростта на въртене на коляновия вал n \u003d 5600 min-1.

Тази изследователска задача беше решена по математически начин, използвайки софтуерния пакет за моделиране на газово-хидравлични процеси. Симулацията се извършва с помощта на софтуерния пакет за поток. За тази цел се получава и внесена геометрия (при геометрия означава вътрешни обеми на двигателя - всмукателни и изпускателни тръбопроводи, липсващ обем на цилиндъра) стандартни формати файлове. Това позволява на SAPR Solidworks да създаде зона за сетълмент.

Под зоната за изчисление се разбира като обем, в който се определят уравненията на математическия модел и границата на обема, на който се определят граничните условия, след това поддържат получената геометрия във формата, поддържан от дебиването и го използват при създаването на Нова изчислена опция.

Тази задача използва ASCII, двоичен формат, в удължението на STL, тип стереолитографияFormat с ъглов толеранс от 4.0 градуса и отклонение от 0.025 метра за подобряване на точността на резултатите от полученото моделиране.

След получаване на триизмерния модел на комплекта за зоната за сетълмент математически модел (набор от закони на промените във физическите параметри на газа за тази задача).

В този случай, по същество суров поток от газ се взема при малки номера на Рейнолдс, който е описан от модела на турбулентен поток от напълно сгъстем газ стандарт K-E Модели на турбулентност. Този математически модел е описан от система, състояща се от седем уравнения: две съоръжения на Navier - уравнения, уравнения на приемствеността, енергетиката, състоянието на идеалния газ, масовия трансфер и уравнението за кинетичната енергия на турбулентни вълни.

(2)

Енергийно уравнение (пълна енталпия)

Уравнението на състоянието на идеалния газ:

Турбулентните компоненти са свързани с останалите променливи чрез турбулентната стойност на вискозитета, която се изчислява в съответствие със стандартния K-ε модел на турбулентност.

Уравнения за k и ε

бурен вискозитет:

константи, параметри и източници:

(9)

(10)

σk \u003d 1; σε \u003d 1.3; Cμ \u003d 0.09; Cε1 \u003d 1.44; Cε2 \u003d 1.92.

Работното вещество в входа е въздух, в този случай, считано за идеалния газ. Първоначалните стойности на параметрите са зададени за цялата зона на сетълмента: температура, концентрация, налягане и скорост. За налягане и температура първоначалните параметри са равни на препратката. Скоростта вътре в изчислената област в посоките x, y, z е нула. Променливата температура и налягане в дебитовете са представени чрез относителни стойности, чиито абсолютни стойности са изчислени по формулата:

fA \u003d F + Fref, (11) \\ t

когато FA е абсолютната стойност на променливата, F е изчислената относителна стойност на променливата, FREF - референтната стойност.

За всяка от изчислените повърхности са определени гранични условия. Съгласно граничните условия е необходимо да се разбере комбинацията от уравнения и закони, характерни за повърхностите на изчислената геометрия. Необходими са гранични условия за определяне на взаимодействието на зоната за сетълмент и математическия модел. На страницата за всяка повърхност показва специфичен вид гранично състояние. Типът на граничното състояние е инсталиран на входните прозорци в входния канал - Безплатно влизане. Останалите елементи - свързаната стена, която не позволява и не предават изчислените параметри на текущата област. В допълнение към всички горепосочени гранични условия, е необходимо да се вземат предвид граничните условия на движещите се елементи, включени в избрания математически модел.

Подвижните части включват вход и изпускателен вентил, бутало. В границите на подвижните елементи ние определяме вида на граничното състояние на стената.

За всяка от движимите тела е поставен законът за движение. Промяната на буталото се определя по формулата. За да се определят законите на клапанното движение, кривите на повдигането на клапана се отстраняват в 0.50 с точност от 0.001 mm. След това се изчисляват скоростта и ускорението на движението на клапата. Получените данни се превръщат в динамични библиотеки (време - скорост).

Следващият етап в процеса на симулация е генерирането на изчислителната мрежа. FlowVision използва локално адаптивна изчислителна мрежа. Първоначално се създава първоначална изчислителна решетка и след това са определени критериите за шлифоване на мрежата, според които дебитът прекъсва клетките на първоначалната решетка до желаната степен. Адаптацията се извършва както в обема на каналите на каналите, така и в цилиндъраните стени. На места с евентуална максимална скорост се създава адаптация с допълнително смилане на изчислителната решетка. По обем, шлайфането се провежда до 2 нива в горивната камера и до 5 нива в клапанните слота, по протежение на стените на цилиндъра, адаптацията е направена до 1 ниво. Това е необходимо за увеличаване на етапа на интеграция на времето с имплицитен метод за изчисление. Това се дължи на факта, че времето стъпка се определя като съотношение на размера на клетката максимална скорост в него.

Преди да започнете да изчислявате създадената опция, трябва да посочите параметрите на цифровото моделиране. В същото време, времето за продължаване на изчислението е равно на един пълен цикъл на работа на двигателя, 7200 pk., Броят на итерациите и честотата на запазване на тези опции за изчисление. За последваща обработка са запазени определени етапи на изчисление. Задайте часа и опциите за процеса на изчисление. Тази задача изисква настройка на времевата стъпка - метод на избор: имплицитна схема с максимална стъпка 5E-004C, ясен брой CFL - 1. Това означава, че времевата стъпка определя самата програма, в зависимост от сближаването на уравненията на налягането себе си.

Постпроцесорът е конфигуриран и параметрите на визуализацията на резултатите се интересуват. Симулацията ви позволява да получавате необходимите слоеве на визуализация след завършване на основното изчисление, въз основа на етапите на изчисление остават с определена честота. В допълнение, постпроцесорът ви позволява да предавате получените числови стойности на параметрите на процеса в процес на изследване под формата на информационен файл във външни редактори на електронни таблици и да се получи времевата зависимост на такива параметри като скорост, консумация, налягане и т.н.

Фигура 1 показва инсталацията на приемника на входящия канал на DVS. Обемът на приемника е равен на обема на един цилиндър на двигателя. Приемникът е зададен възможно най-близо до входящия канал.

Фиг. 1. Обновен с зоната за сетълмент на приемника в CADSOLIDWORDS

Собствената честота на резонатора на Helmholtz е:

(12)

където f е честотата, Hz; C0 - скорост на звука във въздуха (340 m / s); S - напречно сечение, m2; L е дължината на тръбата, m; V е обемът на резонатора, m3.

За нашия пример имаме следните стойности:

d \u003d 0.032 m, s \u003d 0.00080384 m2, v \u003d 0.000422267 m3, l \u003d 0.04 m.

След изчисляване на F \u003d 374 Hz, което съответства на въртящата се скорост на коляновия вал n \u003d 5600 min-1.

След като зададете изчислената опция и, след задаване на параметрите на числено симулация, са получени следните данни: скорост на потока, скорост, плътност, налягане, температура на газовия поток в входящия канал на интензивността на въртенето на коляновия вал.

От представената графика (фиг. 2), по отношение на потока на потока в клапан процеса, ясно е, че модернизираният канал с приемника има максимални консумативи. Стойността на потреблението е по-висока от 200 g / s. Увеличението се наблюдава за 60 g.k.k.v.

Тъй като отварянето на всмукателния клапан (348 g. До 440-450 g.k.v. В канала с приемника стойността на скоростта е по-висока, отколкото в стандарт приблизително 20 m / s, започвайки от 430-440. P.k.v. Цифрената стойност на канала в канала с приемника е значително по-равномерна от модернизирания входен канал, по време на отварянето на входящия клапан. След това има значително намаляване на скоростта на потока до затварянето на входящия клапан.

Фиг. 2. Потребление на газовия поток в слота за клапан за каналите за стандартни, модернизирани и с приемника при n \u003d 5600 min-1: 1 - стандарт, 2 - обновен, 3 - обновен с приемника \\ t

Фиг. 3. Дебитът на потока в слота за клапан за каналите на стандартните, модернизирани и с приемника при N \u003d 5600 min-1: 1 - стандарт, 2 - обновен, 3 - обновен с приемника

От относителните графики под налягане (фиг. 4) (атмосферно налягане, р \u003d 101000 PA е получено за нула), следва, че стойността на налягането в модернизирания канал е по-висока, отколкото в стандарта, с 20 kPa при 460-480 gp. Kv. (свързани с голяма стойност на дебита). От 520 g.k.v. Стойността на налягането е подравнена, която не може да се каже за канала с приемника. Стойността на налягането е по-висока от стандартната, с 25 kPa, започвайки от 420-440 gp.k.v.v. до затварянето на входящия клапан.

Фиг. 4. налягане на потока в стандартно, модернизиран и канал с приемник при n \u003d 5600 min-1 (1 - стандартен канал, 2 - модернизиран канал, 3 - модернизиран канал с приемник)

Фиг. 5. Плътност на потока в стандартна, модернизирана и канал с приемник при N \u003d 5600 min-1 (1 - стандартен канал, 2 - модернизиран канал, 3 - модернизиран канал с приемник)

Плътността на потока в зоната на вентила е показана на фиг. пет.

В модернизирания канал с приемника стойността на плътността е под 0.2 kg / m3, започвайки от 440 g.k.v. В сравнение със стандартен канал. Това е свързано с високи нива на налягане и газ.

От анализа на графиките можете да направите следното заключение: каналът на подобрената форма осигурява по-добро пълнене на цилиндъра с нова такса поради намаляването на хидравличното съпротивление на входящия канал. С увеличаването на скоростта на буталото по време на отварянето на входящия клапан, формата на канала не оказва съществено влияние върху скоростта, плътността и налягането в приемния канал, той се обяснява с факта, че през този период са главно индикаторите за входящи процеси В зависимост от скоростта на буталото и слота за клапан (само формата на входящия канал се променя в това изчисление), но всичко се променя драстично по време на забавянето на движението на буталото. Таксата в стандартния канал е по-малка и инертна и по-силна "опъване" по дължината на канала, която в агрегата дава по-малко пълнене на цилиндъра по време на намаляване на скоростта на движението на буталото. До затваряне на клапана процесът тече под знаменателя на вече получената скорост (буталото дава първоначалния дебит на кеширания обем, с намаление на скоростта на буталото, инерционния компонент на газовия поток на газовия поток има значителна роля на пълнежа. Това се потвърждава от по-високи показатели за скоростта, налягане.

В входния канал с приемника, поради допълнително зареждане и резонансни явления, в цилиндъра на DVS има значително голяма маса на газовата смес, която осигурява по-високи технически индикатори на операцията DVS. Нарастването на растежа в края на входа ще окаже значително въздействие върху увеличаването на техническите и икономически и екологични резултати на работата на ДПС.

Рецензенти:

Годил Александър Николаевич, Доктор на техническия университет, професор по департамент за топлинни двигатели и енергийни инсталации на Държавния университет Владимир на Министерството на образованието и науката, Владимир.

Kulchitsky Aleksey Ramovich, D.N., професор, заместник-главен дизайнер LLC VMTZ, Владимир.

Библиографска справка

Жейоров Л. А., Суворов Е. А., Василеев I. S. Ефект на допълнителен капацитет в входящата система за попълване на DVS // Съвременни проблеми на науката и образованието. - 2013. - № 1;
URL адрес: http://science-education.ru/ru/article/view?id\u003d8270 (дата на обработка: 25.11.2019 г.). Предлагаме на Вашето внимание списанията да публикуват в издателството "Академия за естествена наука"

Изпратете добрата си работа в базата знания е проста. Използвайте формата по-долу

Студентите, завършилите студенти, млади учени, които използват базата на знанието в обучението и работата ви, ще ви бъдат много благодарни.

Публикувано от http://www.allbest.ru/

Публикувано от http://www.allbest.ru/

Федерална агенция за образование

GOU VPO "Урал Държавен Технически университет - UPI, посочен на първия президент на Русия Б.н. Елцин "

За съдебни права

Теза

за степента на кандидати за технически науки

Газова динамика и локален пренос на топлина в входящата система piston DVS.

Дърводелци Леонид Валеревич

Научен съветник:

лекар физико-математическа аудитория,

професор Zhilkin B.P.

Екатеринбург 2009.

система за всмукателна система за динамика на газа на двигателя

Тезата се състои от администрация, пет глави, заключения, списък на препратките, включително 112 имена. Той е изложен на 159 страници компютърно набиране в програмата MS Word и е оборудван с текста 87 чертежи и 1 таблица.

Ключови думи: газова динамика, бутални DVS, всмукателна система, напречно профилиране, консумативи, Местен пренос на топлина, незабавен коефициент на пренос на топлина.

Целта на изследването е нестационарният въздушен поток в входната система на буталния двигател с вътрешно горене.

Целта на работата е да се установят моделите на промени в газо-динамичните и термичните характеристики на входящия процес в двигателя с вътрешно горене на бутала от геометрични и режимни фактори.

Показано е, че чрез поставяне на профилирани вложки е възможно да се сравни с традиционен канал на постоянния кръг, за да се придобият редица предимства: увеличаване на обемния поток на въздух, който влиза в цилиндъра; Увеличаването на стръмността на зависимостта v върху броя на въртенето на коляновия вал n в работния обхват на въртенето на въртенето в "триъгълна" вложка или линеаризация на характеристиката на разходите в целия диапазон от ротационни номера на вала, като и като потискане на високочестотните пулсации на въздушния поток в входящия канал.

Създават се значителни различия в моделите на промяна на коефициентите на коефициентите на топлопренасяне от скоростта W в стационарния и пулсиращ поток на въздуха в входната система на DVS. Приблизиването на експерименталните данни е получено уравнения за изчисляване на коефициента на локалния пренос на топлина в входящия тракт на FEA, както за стационарен поток, така и за динамичен пулсиращ поток.

Въведение

1. Състояние на проблема и определяне на целите на проучването

2. Описание на експерименталните методи за инсталиране и измерване

2.2 Измерване на въртенето на скоростта и ъгъла на въртенето на коляновия вал

2.3 Измерване на мигновената консумация на смукателния въздух

2.4 система за измерване на мигновени коефициенти на пренос на топлина

2.5 Система за събиране на данни

3. Динамика на газа и входния процес на консумативи във вътрешния двигател с вътрешно горене при различни конфигурации на всмукателна система

3.1 Газова динамика на входящия процес, без да се отчита ефектът на филтърния елемент

3.2 Влияние на филтърния елемент върху газовата динамика на всмукателния процес в различни конфигурации на всмукателната система

3.3 Консумативи и спектрален анализ на входящия процес с различни конфигурации на всмукателната система с различни филлни елементи

4. пренос на топлина в всмукателния канал на буталния двигател на вътрешното изгаряне

4.1 Калибриране на измервателната система за определяне на локалния коефициент на пренос на топлина

4.2 Локален коефициент на топлопреминаване в входящия канал на двигателя с вътрешно горене в стационарен режим

4.3 Незабавно локален коефициент на топлопреминаване в входящия канал на двигателя с вътрешно горене

4.4 Влияние на конфигурацията на входящата система на двигателя с вътрешно горене върху мигновения коефициент на пренос на топлина

5. Въпроси за практическо прилагане на резултатите от работата

5.1 Конструктивен и технологичен дизайн

5.2 Спестяване на енергия и ресурси

Заключение

Библиография

Списък на основните наименования и съкращения

Всички символи са обяснени, когато се използват за първи път в текста. Следното е само списък на най-консумираните обозначения:

d -диамат на тръби, мм;

d e е еквивалентен (хидравличен) диаметър, mm;

F - площ, m 2;

i - текуща сила и;

G - масов поток въздух, kg / s;

L - дължина, m;

l е характерен линеен размер, m;

п е въртяща се скорост на коляновия вал, min -1;

p - атмосферно налягане, ПА;

R - съпротивление, ома;

T - абсолютна температура;

t - температурата на мащаба по Целзий, ОС;

U - напрежение, в;

V - дебит на въздуха, m 3 / s;

w - скорост на потока на въздуха, m / s;

Свръх въздушен коефициент;

g - ъгъл, градушка;

Ъгълът на въртене на коляновия вал, градушка., P.k.v.;

Коефициент на топлопроводимост, w / (m k);

Кинематичен коефициент на вискозитет, m 2 / s;

Плътност, kg / m 3;

Време, s;

Коефициент на съпротивление;

Основни разфасовки:

p.k.v. - въртене на коляновия вал;

DVS - двигател с вътрешно горене;

НМТ - Горна мъртва точка;

NMT - долна мъртва точка

ADC - аналогов до-цифров конвертор;

BPF - бърза трансформация на Фурие.

Числа:

Re \u003d номер на wd / - rangeld;

Nu \u003d d / - брой на nusselt.

Въведение

Основната задача в развитието и подобряването бутални двигатели Вътрешното изгаряне е да се подобри пълненето на цилиндъра с нова такса (или с други думи, увеличаване на коефициента на пълнене). Понастоящем развитието на DVS е достигнало такова ниво, че подобряването на всеки технически и икономически показател поне на десетия дял от процента с минимални материални и временни разходи е истинско постижение за изследователи или инженери. Ето защо, за постигане на целта, изследователите предлагат и използват различни методи сред най-често могат да бъдат отличени със следното: динамично (инерционно) редуциране, турбокомпресор или въздушни вентилатори, входен канал с променлива дължина, настройка на механизма и фази на газоразпределение, оптимизиране на конфигурацията на всмукателната система. Използването на тези методи позволява да се подобри пълненето на цилиндъра с ново зареждане, което от своя страна увеличава мощността на двигателя и техническите и икономическите показатели.

Въпреки това, използването на по-голямата част от разглежданите методи изискват значителни материални инвестиции и значителна модернизация на дизайна на входящата система и двигателя като цяло. Ето защо, един от най-често срещаните, но не и най-простите досега, методите за увеличаване на пълнещия фактор е да се оптимизира конфигурацията на входящия път на двигателя. В този случай проучването и подобряването на входящия канал на двигателя най-често се извършват по метода на математическо моделиране или статични чистчета на всмукателната система. Въпреки това, тези методи не могат да дадат правилни резултати на съвременното развитие на развитието на двигателя, тъй като, както е известно, реалният процес в газовите пътеки на двигателите е триизмерна газова мастиленоструйна изтичане през слота за клапан в частично запълнен пространство на обемния цилиндър на променливия обем. Анализът на литературата показва, че информацията за входящия процес в реалния динамичен режим е практически отсъстваща.

Така, надеждни и правилни газо-динамични и топлообменни данни за входящия процес могат да бъдат получени изключително в проучвания за динамични модели на DVS или реални двигатели. Само такива опитни данни могат да предоставят необходимата информация за подобряване на двигателя на настоящото ниво.

Целта на работата е да се установят моделите на промяна на газо-динамичните и топлинните характеристики на процеса на пълнене на цилиндъра с нов двигател с вътрешно горене на бутала от геометрични и режимни фактори.

Научната новост на основните разпоредби на работата е авторът за първи път:

Характеристиките на амплитудата на ефектите на пулсацията, възникнали в потока в всмукателния колектор (тръба) на буталния двигател;

Метод за увеличаване на въздушния поток (средно с 24%) влиза в цилиндъра, като се използват профилирани вложки в всмукателния колектор, което ще доведе до увеличаване на мощността на двигателя;

Създават се моделите на промените в дневния коефициент на пренасяне на топлина в входната тръба на буталото;

Показано е, че използването на профилирани вложки намалява нагряването на прясно зареждане при приемане със средно 30%, което ще подобри пълнежа на цилиндъра;

Обобщени под формата на емпирични уравнения, получените експериментални данни за местния пренос на топлина на пулсиращия поток на въздуха в всмукателния колектор.

Точността на резултатите се основава на надеждността на експерименталните данни, получени от комбинацията от независими изследвания и потвърдени от възпроизводимостта на експериментални резултати, тяхното добро споразумение на ниво експерименти с тези автори, както и използването на a Комплекс от съвременни изследвания, избор на измервателно оборудване, систематично тестване и насочване.

Практическо значение. Получените експериментални данни създават основата за разработване на инженерни методи за изчисляване и проектиране на мастилено-мастило системи, както и разширяване на теоретичните изображения за газовата динамика и местен въздушен трансфер по време на приема на бутален двигател. Индивидуалните резултати от работата бяха направени за прилагането на уралния дизелов двигател LLC в проектирането и модернизацията на 6DM-21L и 8DM-21L двигатели.

Методи за определяне на скоростта на потока на пулсиращия въздушен поток в входната тръба на двигателя и интензивността на мигновения пренос на топлина в него;

Експериментални данни за газовата динамика и мигновен локален коефициент на пренос на топлина в входящия канал на входния канал в процеса на всмукване;

Резултатите от обобщаването на данните за местния коефициент на трансфер на въздушен топлообмен в входящия канал на DVS под формата на емпирични уравнения;

Апробация на работата. Основните резултати от проучванията, посочени в тезата, съобщават и бяха представени на "докладващите конференции на млади учени", Екатеринбург, UGTU-UPI (2006 - 2008); Научни семинари отдел "Теоретично топлоинженерство" и "турбини и двигатели", Екатеринбург, UGTU-UPI (2006 - 2008); Научна и техническа конференция "Подобряване на ефективността електроцентрали Машини за колела и роботните машини ", Челябинск: Челябинск Висша военна автофора комунистическа партия (Военния институт) (2008); Научна и техническа конференция "Развитие на инженеринг в Русия", Санкт Петербург (2009); относно Научния и технически съвет при урален дизелов двигател LLC, Yekaterinburg (2009); На Научния и технически съвет за AutoTractor технология OJSC NII, Челябинск (2009).

Работата по дисертация е извършена в отделите "Теоретична топлотехника и" турбини и двигатели ".

1. Преглед на текущото състояние на изследването на всмукателните системи на буталото

Към днешна дата има голям брой литература, в която се разглеждат конструктивното изпълнение на различни системи на бутални двигатели с вътрешно горене, по-специално отделни елементи на входните системи на системите за мастило. Въпреки това, практически няма обосновка на предложените дизайнерски решения чрез анализиране на газовата динамика и пренос на топлина на входящия процес. И само в отделни монографии предоставят експериментални или статистически данни за резултатите от работата, потвърждавайки осъществимостта на една или друга конструктивна работа. В това отношение може да се твърди, че доскоро не е обърнато достатъчно внимание на изследването и оптимизирането на входните системи на буталните двигатели.

През последните десетилетия във връзка с затягането на икономическите и екологичните изисквания за двигатели с вътрешно горене, изследователите и инженерите започват да обръщат все по-голямо внимание на подобряването на всмукателните системи както на бензинови, така и на дизелови двигатели, като вярваха, че тяхното изпълнение е до голяма степен зависима от Съвършенство на процесите, протичащи в газови пътеки.

1.1 Основни елементи на входящите входящи входящи входове

В приемната система на буталото, като цяло, се състои от въздушен филтър, всмукателен колектор (или входяща тръба), цилиндрови глави, които съдържат приемни и изходящи канали, както и механизма на клапана. Като пример, на фигура 1.1, е показана диаграма на всмукателната система на дизеловия двигател YMZ-238.

Фиг. 1.1. Схема на всмукателната система на дизеловия двигател YMZ-238: 1 - всмукателен колектор (тръба); 2 - Гумено уплътнение; 3.5 - свързващи дюзи; 4 - очаквано уплътнение; 6 - маркуч; 7 - въздушен филтър

Изборът на оптимални структурни параметри и аеродинамичните характеристики на всмукателната система предопределят ефективния работен поток и високото ниво на изходните индикатори на двигателите с вътрешно горене.

Накратко разгледайте всеки композитен елемент входна система и основните му функции.

Цилиндровата глава е един от най-сложните и важни елементи във вътрешния двигател с вътрешно горене. От правилния избор на формата и размера на основните елементи (на първо място, съвършенството на процесите на пълнене и смесване до голяма степен зависи от размера на всмукателните и изпускателните клапани).

Цилиндровите глави са предимно с два или четири клапана на цилиндъра. Предимствата на дизайна на двуплавия са простотата на производствената технология и проектната схема, в по-малка структурна маса и стойност, броя на движещите се части в задвижващия механизъм, разходите за поддръжка и ремонт.

Предимствата на четирифайонните структури се състоят в по-добро използване на площта, ограничена от цилиндровата верига, за преминаващите територии на вентила gorlovin, в по-ефективен газов обмен, в по-малко термично напрежение на главата поради по-равномерно Термично състояние, във възможността за централно поставяне на дюзата или свещите, което увеличава еднородността на данните за термичното състояние бутална група.

Има и други дизайни на цилиндрови глави, например с три входни клапана и едно или две дипломиране на цилиндър. Тези схеми обаче се прилагат относително редки, главно в силно свързани (състезателни) двигатели.

Влиянието на броя на клапаните върху газовата динамика и пренос на топлина в входния път обикновено не се изследва.

Най-важните елементи на цилиндровата глава от гледна точка на тяхното влияние върху динамиката на газа и процеса на топлообмен в двигателя са вида входящи канали.

Един от начините за оптимизиране на процеса на пълнене е входните канали в цилиндъра. Има голямо разнообразие от форми на профилиране, за да се осигури насоченото движение на прясно зареждане в цилиндъра на двигателя и подобряване на процеса на смесване, те са описани най-подробно.

В зависимост от вида на процеса на смесване, входящите канали се извършват чрез еднофункционален (отвратен), като се осигурява само пълнене с цилиндри с въздух или две функции (тангенциален, винт или друг тип), използван за вход и завъртане на въздуха в Цилиндрова и горивна камера.

Нека да се обърнем към въпроса за характеристиките на дизайна на всмукателните колектори на бензинови и дизелови двигатели. Анализ на литературата показва, че приемникът на всмукателния колектор (или мастило) се дава малко внимание и често се разглежда само като тръбопровод за захранване на въздух или гориво-въздушна смес в двигателя.

Въздушен филтър Това е неразделна част от входящата система на буталото. Трябва да се отбележи, че в литературата се обръща повече внимание на дизайна, материалите и устойчивостта на филтърните елементи и в същото време ефектът на филтриращия елемент върху газо-динамични и топломени индикатори, както и разходите На практика не се обмисля характеристиките на системата за вътрешно горене на бутала.

1.2 Динамика на газа на потока в входни канали и методи за изучаване на входящия процес в буталния двигател

За по-точно разбиране на физическата същност на резултатите, получени от други автори, те са очертани едновременно с теоретичните и експерименталните методи, използвани, тъй като методът и резултатът са в една органична комуникация.

Методите за изследване на входните системи на ХОС могат да бъдат разделени на две големи групи. Първата група включва теоретичен анализ на процесите в входящата система, включително тяхната цифрова симулация. Към втората група ще направим всички начини за експериментално проучване на входа.

Изборът на изследователски методи, оценки и регулиране на всмукателните системи се определя от поставените цели, както и съществуващите материали, експериментални и изчислени възможности.

Към днешна дата, няма аналитични методи, които позволяват да бъде доста точна, за да се оцени нивото на интензивност на газа в горивната камера, както и да решават лични проблеми, свързани с описание на движението в приемния път и изтичането на газ и изтичането на газ пропастта на клапаните в реалния неизпълним процес. Това се дължи на трудностите при описването на триизмерния поток от газове върху криволинейни канали с внезапни препятствия, сложна пространствена структура на пространствената потока, с изход за реактивен газ през слота за клапан и частично запълнено пространство на валутен цилиндър, взаимодействието потоци между себе си, със стените на цилиндъра и подвижното дъно на буталото. Аналитичното определяне на оптималното поле на скоростта в входната тръба, в слота за пръстена и разпределението на потоците в цилиндъра се усложнява от липсата на точни методи за оценка на аеродинамичните загуби, произтичащи от нова заряда в входната система и при газ и при газ в цилиндъра и потока около вътрешните му повърхности. Известно е, че в канала има нестабилни зони на прехода на потока от ламинар към турбулентен режим на потока, районът на разделяне на граничния слой. Структурата на потока се характеризира с променливи по време и мястото на Рейнолдс, нивото на нестационарността, интензивността и мащаба на турбуленцията.

Много многопосочна работа е посветена на числено моделиране на движението на въздушния заряд на входа. Те произвеждат моделиране на вихровия поток на входа на входа на входа на входящия клапан, изчисляването на триизмерния поток в входните канали на цилиндрова глава, моделиране на потока в входящия прозорец и двигателя Цилиндър, анализ на ефекта на директни потоци и въртеливи потоци върху процеса на смесване и изчислени проучвания на ефекта на заряда, усукващ в дизеловия цилиндър, величината на емисиите на азотни оксиди и индикаторни индикатори. Въпреки това, само в някои от произведенията, цифровата симулация се потвърждава чрез експериментални данни. И единствено върху теоретичните проучвания е трудно да се прецени точността и степента на приложимост на данните. Трябва също да се подчертае, че почти всички цифрови методи са насочени главно към изучаване на процесите в вече съществуващия дизайн на входа на входната система на интензивността на DVS за отстраняване на нейните недостатъци, а не за разработване на нови, ефективни дизайнерски решения.

Успоредно с това се прилагат класическите аналитични методи за изчисляване на работния поток в двигателя и отделни процеси на обмен на газ в нея. Въпреки това, при изчисленията на потока на газ в входните и изпускателните клапани и каналите, уравненията на едноизмерния стационарен поток се използват главно, като се вземат сегашното квази-стационарно. Следователно разглежданите методи за изчисление се оценяват изключително (приблизително) и следователно изискват експериментално усъвършенстване в лабораторията или на реален двигател по време на тестовете за пейки. Методи за изчисляване на газовия обмен и основните газо-динамични показатели на входящия процес в по-трудна формулировка се развиват в строителните работи. Въпреки това, те също така дават само обща информация за обсъжданите процеси, не образуват достатъчно пълно представителство на газо-динамични и топлообменни курсове, тъй като те се основават на статистически данни, получени в математическо моделиране и / или статични читали на входящия тракт на мастилото и методите на цифровата симулация.

Най-точни и надеждни данни за входящия процес в буталния двигател могат да бъдат получени в проучването на реални двигатели.

Към първите проучвания на заряда в цилиндъра на двигателя върху режима на тестване на вала, класическите експерименти на Ricardo и паричните средства могат да бъдат приписани. Riccardo инсталира работно колело в горивната камера и записа скоростта на въртене, когато валът на двигателя е проверен. Анемометърът фиксира средната стойност на скоростта на газа за един цикъл. Рикардо въведе концепцията за "вихрово съотношение", съответстващо на съотношението на честотата на работното колело, измерено въртенето на вихъра и коляновия вал. CASS монтира плочата в отворената горивна камера и записва ефекта върху въздушния поток. Има и други начини за използване на плочи, свързани с тенджера или индуктивни сензори. Въпреки това, инсталирането на плочи деформира въртящия се поток, който е недостатък на такива методи.

Модерното изследване на газовата динамика директно върху двигателите изисква специални инструменти Измервания, които са способни да работят при неблагоприятни условия (шум, вибрации, въртящи се елементи, висока температура и налягане при изгаряне на гориво и в изпускателни канали). В този случай, процесите в DVS са високоскоростни и периодични, така че измервателното оборудване и сензорите трябва да имат много висока скорост. Всичко това значително усложнява проучването на входящия процес.

Трябва да се отбележи, че понастоящем методите за естествени изследвания върху двигателите са широко използвани, както да изследват потока на въздуха в входящата система и двигателния цилиндър и за анализ на ефекта на вихровата формация върху входа за токсичността на отработените газове.

Въпреки това, природните изследвания, където в същото време голям брой различни фактори действат, не позволяват да се проникнат в детайлите на механизма на отделен феномен, не позволявайте да се използва високо прецизно, сложно оборудване. Всичко това е прерогатив на лабораторни изследвания, използвайки сложни методи.

Резултатите от изследването на газовата динамика на входящия процес, получени в проучването на двигателите, са доста подробни в монографията.

От тях най-големият интерес е осцилограмата на промените във въздушния дебит в входната секция на входящия канал на двигателя на тракторната инсталация на Владимир, която е представена на фигура 1.2.

Фиг. 1.2. Параметри на потока във входната част на канала: 1 - 30 S -1, 2 - 25 S -1, 3 - 20 S -1

Измерването на скоростта на потока на въздуха в това изследване се извършва с термометрометър, работещ в DC режим.

И тук е целесъобразно да се обърне внимание на самия метод на термоемометрия, който благодарение на редица предимства, получават такава широко разпространена газова динамика на различни процеси в научните изследвания. В момента съществуват различни схеми на термоанемометри в зависимост от задачите и областта на изследванията. Най-подробната теория на термоенемометрията се разглежда. Трябва също да се отбележи голямо разнообразие от проекти за термометрометър, което показва широкото използване на този метод във всички области на промишлеността, включително инженерство.

Помислете за въпроса за приложимостта на метода на термоенемометрията за изучаване на входящия процес в бутащия двигател. По този начин, малките размери на чувствителния елемент на термометромерния сензор не правят значителни промени в естеството на потока на въздуха; Високата чувствителност на анемометите ви позволява да регистрирате колебания с малки амплитуди и високи честоти; Простотата на хардуерната схема дава възможност лесно да се записва електрическият сигнал от изхода на термомемометъра, последван от обработката му на персонален компютър. В термомемометрията се използва в режимите на оразмеряване на един, два- или трикомпонентни сензори. Нишка или филми на огнеупорни метали с дебелина 0.5-20 цт и дължина 1-12 mm обикновено се използват като чувствителен елемент на термометричния сензор. Последният преминава през порцеланова дву-, тристранна или четиримесечна тръба, която се поставя върху металния калъф за запечатване от пробив, металния корпус, олекуван в блоковата глава за изследване на вътрешно-цилиндровото пространство или в тръбопроводи за определяне на средните и пулсални компоненти на скоростта на газа.

И сега обратно към осцилограмата, показана на фигура 1.2. Графиката обръща внимание на факта, че той представя промяна в дебита на въздуха от ъгъла на въртене на коляновия вал (p.k.v.) само за входящия такт (200 градуса. P.K.V.), докато останалата информация за други часовници като него бяха "изрязани". Тази осцилограма се получава за въртене честотата на коляновия вал от 600 до 1800 min -1, докато в модерни двигатели Обхватът на работните скорости е много по-широк: 600-3000 min -1. Обръща се внимание на факта, че дебитът в тракара преди отваряне на клапана не е нула. На свой ред, след затваряне на всмукателния вентил, скоростта не се нулира, вероятно защото по пътя има високочестотен бутоничен поток, който в някои двигатели се използва за създаване на динамична (или инертерация).

Ето защо е важно да се разбере процесът като цяло, данните за промяната в дебита на въздуха в входящия участък за целия работен поток на двигателя (720 градуса, PKV) и в целия работен обхват на честотата на въртене на коляновия вал. Тези данни са необходими за подобряване на входящия процес, търсене на начини за увеличаване на магнитудата на нова такса, въведена в цилиндрите на двигателя и създаване на динамични системи за овладяване.

Накратко обмислете особеностите на динамичното овладяване в бутален двигател, който се извършва по различни начини. Не само фазите на разпределение на газ, но и дизайнът на прием на всмукване и дипломиране влияят на входящия процес. Движението на буталото, когато всмукателният такт води до отворен всмукващ клапан към образуването на вълната на гърба. При отворен входящ тръбопровод, тази вълна на налягане се появява с маса от фиксиран околен въздух, отразен от него и се придвижва обратно към входната тръба. В колегите на въздушната колона в входящия тръбопровод може да се използва за увеличаване на пълненето на цилиндри с прясно зареждане и по този начин се получава голямо количество въртящ момент.

С различна форма на динамична свръхчаса - инертен по-добър, всеки входен канал на цилиндъра има своя собствена отделна резонаторна тръба, съответната акустика на дължината, свързана към събиращата камера. В такива резонаторни тръби компресионната вълна, идваща от цилиндри, може да се разпространи независимо един от друг. При координиране на дължината и диаметъра на отделните резонаторни тръби с фази на газоразпределителната фаза, компресионната вълна, отразена в края на резонаторната тръба, връща чрез отворения входен клапан на цилиндъра, като по този начин осигурява най-доброто му пълнене.

Резонансното намаляване се основава на факта, че във въздушния поток в входния тръбопровод при определена скорост на въртене на коляновия вал има резонансни трептения, причинени от буталото на буталото. Това, с правилното оформление на всмукателната система, води до по-нататъшно повишаване на налягането и допълнителен адхезивен ефект.

В същото време, споменатите динамични методи за усилване работят в тесен диапазон от режими, изискват много сложна и постоянна настройка, тъй като акустичните характеристики на двигателя се променят.

Също така, данните за газовата динамика за целия работен поток на двигателя могат да бъдат полезни за оптимизиране на процеса на пълнене и търсенията за увеличаване на въздушния поток през двигателя и съответно неговата сила. В същото време интензивността и мащаба на турбуленцията на въздушния поток, които се генерират в входния канал, както и броя на вихрите, образувани по време на входящия процес.

Бързият поток и широкомащабната турбулентност във въздушния поток осигуряват добро смесване на въздух и гориво и по този начин пълното изгаряне с ниска концентрация на вредни вещества в отработените газове.

Един от начините за създаване на вихрите в процеса на всмукване е използването на капак, който споделя пътя на всмукване в два канала, единият от които може да се припокрива, контролира движението на заряда на сместа. Има голям брой дизайнерски версии, за да се даде тангенциален компонент на движението на потока, за да се организират насочени вихри в входния тръбопровод и цилиндър на двигателя
. Целта на всички тези решения е да се създадат и управляват вертикални вихри в цилиндъра на двигателя.

Има и други начини за контрол на новата такса за пълнене. Дизайнът на спираловиден канал се използва в двигателя с различна стъпка от завои, плоски места на вътрешната стена и остри ръбове на изхода на канала. Друго устройство за регулиране на вихрекс образуването в цилиндъра на двигателя е спирална пружина, монтирана в входящия канал и твърдо фиксиран с единия край преди клапана.

По този начин е възможно да се отбележи тенденцията на изследователите да създадат големи вихрущи сили на различни посоки на разпространение на входа. В този случай въздухът трябва да съдържа главно мащабна турбулентност. Това води до подобрение в сместа и последващо изгаряне на гориво, както в бензинови, така и в дизелови двигатели. И в резултат на това се намаляват специфичното потребление на гориво и емисии на вредни вещества с отработените газове.

Въпреки това, в литературата няма информация за опитите да се контролира образуването на вихър с помощта на напречно профилиране - промяна във формата напречно сечение Канал и е известно, че силно влияе върху естеството на потока.

След гореизложеното може да се заключи, че на този етап в литературата има значителна липса на надеждност и пълна информация Според газовата динамика на процеса на всмукване, а именно: промяна в дебита на въздуха от ъгъла на въртенето на коляновия вал за целия работен поток на двигателя в работния обхват на честотата на въртене на коляновия вал; Ефекта на филтъра върху газовата динамика на входящия процес; мащабът на турбуленцията се случва по време на приема; Влиянието на хидродинамичната нестационарност върху консумативите в входящия тракт на DVS и др.

Спешната задача е да се търсят методите за увеличаване на въздушния поток през цилиндрите на двигателя с минимално изтънченост на двигателя.

Както вече беше отбелязано по-горе, най-пълните и надеждни входни данни могат да бъдат получени от проучвания за реални двигатели. Тази посока на изследванията обаче е много сложна и скъпа, а за редица въпроси е почти невъзможно, следователно комбинираните методи за проучване на процесите в МНС са разработени чрез експериментатори. Помислете за широко разпространение от тях.

Разработването на набор от параметри и методи за изчисляване и експериментални изследвания се дължи на големия брой на всеобхватните аналитични описания на дизайна на входната система на двигателя на буталото, динамиката на процеса и движението на заряда в входни канали и цилиндър.

Приемливи резултати могат да бъдат получени при съвместно изследване на процеса на всмукване на персонален компютър, използвайки цифрови методи за моделиране и експериментално чрез статични чистчета. Според тази техника са направени много различни проучвания. В такива работи, или възможността за числено симулация на въртящи се потоци в входната система на мастилената система, последвано от тестване на резултатите, като се използва продукция в статичен режим на инспектор, или е разработен изчислен математически модел на базата на получените експериментални данни в статични режими или по време на експлоатацията на индивидуални модификации на двигателите. Подчертаваме, че основата на почти всички такива проучвания се вземат експериментални данни, получени от помощта на статично разпенване на входящата система на мастилената система.

Помислете за класически начин за изучаване на всмукателния процес, като използвате анемометър на веранда. При фиксирани клапан, той произвежда прочистване на тестовия канал с различна втори консумация на въздух. За прочистване се използват реални цилиндрови глави, отлечени от метал или техните модели (сгъваем дървен, гипс, от епоксидни смоли и др.), Сглобени с клапани, които ръководят линии и седла. Въпреки това, както е описано сравнителни тестове, този метод предоставя информация за ефекта на формата на пътя, но работното колело не реагира на действието на целия въздушен поток в напречното сечение, което може да доведе до значителна грешка при оценката на. \\ T Интензивност на заряда в цилиндъра, който се потвърждава математически и експериментално.

Друг условен метод за изучаване на процеса на пълнене е метод, използващ скрита решетка. Този метод се различава от предишния от факта, че абсорбираният въртящ се въздушен поток се изпраща до обтекането върху острието на скритата решетка. В този случай въртящият се поток е откраднат и се образува реактивен момент върху ножовете, който се записва от капацитивния сензор в величината на ъгъла на завъртане на торк. Скритият поток, преминал през решетката, тече през отворена част в края на ръкава в атмосферата. Този метод ви позволява изчерпателно да оцените входящия канал за енергийните показатели и по степента на аеродинамичните загуби.

Дори въпреки факта, че методите на изследване на статичните модели дават само най-общата представа за газо-динамичните и топлообменните характеристики на входа, те все още остават релевантни поради тяхната простота. Изследователите все повече използват тези методи само за предварителна оценка на перспективите за всмукателни системи или преобразуване, които вече съществуват. Въпреки това, за пълно разбиране на физиката на явленията по време на входящия процес на тези методи очевидно не е достатъчно.

Един от най-точните и ефективни начини за изучаване на входящия процес в двигателя са експерименти по специални, динамични инсталации. В предположението, че газо-динамичните и топлообменните характеристики и характеристики на заряда в входящата система са функции на геометрични параметри и фактори на режима за изследването, е много полезно да се използва динамичен модел - експериментална инсталация, която най-често Представлява модел на един цилиндър двигател на различни високоскоростни режими, действащи с помощта на тест за колянов вал от външен източник на енергия и оборудван с различни типове сензори. В този случай можете да оцените общата ефективност от определени решения или тяхната ефективност е елемент. Като цяло, такъв експеримент се намалява, за да се определят характеристиките на потока в различни елементи на всмукателната система (мигновени стойности на температура, налягане и скорост), вариращи ъгъл на въртене на коляновия вал.

Така, най-оптималният начин за изучаване на входящия процес, който дава пълни и надеждни данни, е създаването на едноцилиндричен динамичен модел на бутален двигател, задвижван до въртене от външен енергиен източник. В този случай този метод позволява да се изследват както газо-динамични, така и топлообменници на процеса на пълнене в двигателя с вътрешно горене на бутала. Използването на термоенемометрични методи ще позволи да се получат надеждни данни без значителен ефект върху процесите, настъпили в приемната система на експерименталния модел на двигателя.

1.3 Характеристики на процесите на топлообмен в входната система на буталния двигател

Изследването на топлообмен в буталото на двигателя с вътрешно горене започна в действителност от създаването на първите работещи машини - J. Lenoara, N. Otto и R. Diesel. И разбира се, на началния етап се обръща специално внимание на изследването на топлообмен в двигателния цилиндър. Първите класически произведения в тази посока могат да бъдат приписани.

Въпреки това, само работата, извършена от v.i. Гриневик, стана солидна основа, която се оказа възможно да се изгради теорията за топлообмен за бутални двигатели. Въпросният монограф е предназначен предимно на термичното изчисляване на вътрешно-цилиндрови процеси в OI. В същото време той може също така да намери информация за топломните показатели в процеса на входа, а именно, има статистически данни за величината на нагряване на прясна такса, както и емпирични формули за изчисляване на параметрите на началото и края на входа.

Освен това изследователите започнаха да решават повече лични задачи. По-специално, V. NusseLt получи и публикува формула за коефициент на топлопреминаване в бутален цилиндър на двигателя. N.r. Блестящият в неговата монография изясни формулата на NusseLt и съвсем ясно доказана, че във всеки случай (тип двигател, метод за смесване, скорост на скоростта, нивото на процъфтяване), местни коефициенти на пренос на топлина трябва да бъдат изяснени чрез резултатите от директните експерименти.

Друга посока в изследването на буталните двигатели е изследването на топлообмен в потока на отработените газове, по-специално получаване на данни за топлопредаване по време на бурен газов поток в изпускателната тръба. Голям брой литература са посветени на решаването на тези задачи. Тази посока е доста добре проучена както в статични условия на прочистване, така и при хидродинамична нестационарност. Това се дължи главно на факта, че чрез подобряване на изпускателната система е възможно значително да се увеличат техническите и икономическите показатели на двигателя с вътрешно горене на бутала. В хода на развитието на тази област бяха проведени много теоретични творби, включително аналитични решения и математическо моделиране, както и много експериментални изследвания. В резултат на такова изчерпателно проучване на процеса на освобождаване, бяха предложени голям брой показатели, характеризиращи процеса на освобождаване, за които може да се оцени качеството на дизайна на изпускателната система.

Изследването на топлообмена на входящия процес все още не се обръща достатъчно. Това може да се обясни с факта, че проучванията в областта на топлообменната оптимизация в цилиндъра и отработените трака са първоначално по-ефективни по отношение на подобряването на конкурентоспособността на бутащия двигател. Понастоящем обаче развитието на двигателната индустрия е достигнало такова ниво, че увеличаването на индикатора на двигателя най-малко няколко десети проценти се счита за сериозно постижение за изследователите и инженерите. Ето защо, като се вземат предвид факта, че насоките за подобряване на тези системи са предимно изтощени, в момента все повече и повече специалисти търсят нови възможности за подобряване на работните процеци на бутални двигатели. И една от тези посоки е изследването на топлообмен по време на входа в входа.

В литературата на топлообмен в процеса на всмукване, работата може да се разграничи върху изследването на влиянието на интензивността на вихровия поток на зареждане върху входа върху термичното състояние на частите на двигателя (цилиндрова глава, прием и изпускателен клапан, Повърхности на цилиндъра). Тези произведения са с голям теоретичен характер; Въз основа на решаването на нелинейни уравнения на Navier-Stokes и Fourier-Ostregradsky, както и математическо моделиране, използвайки тези уравнения. Като се има предвид голям брой предположения, резултатите могат да бъдат взети като основа за експериментални проучвания и / или да бъдат оценени в инженерни изчисления. Също така, тези произведения съдържат експериментални проучвания за определяне на локални не-стационарни топлинни потоци в дизелова горивна камера в широк диапазон интензивност на входящия въздух на интензитета.

Гореспоменатите термообменни работи в процеса на входа най-често не засягат влиянието на газовата динамика върху местната интензивност на преноса на топлина, който определя размера на нагряването на свежи заряд и температурни напрежения в всмукателния колектор (тръба). Но, както е добре известно, величината на нагряването на прясна заряда има значителен ефект върху масовата консумация на прясна такса през цилиндрите на двигателя и съответно неговата сила. Също така, намаляването на динамичната интензивност на преноса на топлина в входната пътека на буталния двигател може да намали нейното напрежение и по този начин ще увеличи ресурса на този елемент. Ето защо, проучването и решаването на тези задачи е спешна задача за развитието на изграждането на двигателя.

Трябва да се посочи, че понастоящем за инженерните изчисления използват статични продуциращи данни, което не е правилно, тъй като нестационарността (поток пулсация) силно влияе върху топлопредаването в каналите. Експерименталните и теоретичните проучвания показват значителна разлика в коефициента на пренос на топлина в нестационарни условия от стационарен случай. Тя може да достигне 3-4-кратна стойност. Основната причина за тази разлика е специфичното преструктуриране на турбулентната структура на потока, както е показано в.

Установено е, че в резултат на ефекта върху потока на динамична нестационарност (ускорение на потока), тя се осъществява в кинематичната структура, което води до намаляване на интензивността на топлообменните процеси. Също така, работата беше установена, че ускорението на потока води до увеличаване на 2-3-алармата в тенчествените подчертавания и впоследствие до намаляване на локалните коефициенти на пренос на топлина.

Така, за изчисляване на размера на нагряването на прясно зареждане и определяне на температурните напрежения в всмукателния колектор (тръба), в този канал са необходими данни за моментния местен пренос на топлина, тъй като резултатите от статични чистчета могат да доведат до сериозни грешки ( Повече от 50%) при определяне на коефициента на топлопреминаване в приемния тракт, който е неприемлив дори за инженерни изчисления.

1.4 Заключения и определяне на целите на проучването

Въз основа на горното могат да се направят следните заключения. Технологични характеристики Двигателят с вътрешно горене се определя до голяма степен от аеродинамичното качество на приемния път като цяло и индивидуални елементи: всмукателния колектор (всмукателна тръба), канала в цилиндрова глава, неговата врата и клапани, горивни камери в дъното на бутало.

Понастоящем обаче се фокусира върху оптимизирането на дизайна на канала в цилиндровата глава и сложните и скъпите системи за пълнене на цилиндъра с нова заряда, докато може да се предположи, че само чрез профилиране на всмукателния колектор може да бъде повлиян от газовия динамик, топлина консумативи за обмен и двигатели.

В момента съществуват голямо разнообразие от средства и методи за измерване за динамично изследване на входящия процес и основната методологична сложност се състои в тяхната правилен избор и използвайте.

Въз основа на горния анализ на литературните данни могат да бъдат формулирани следните задачи на дисертация.

1. да се установи ефекта на конфигурацията на всмукателния колектор и наличието на филтриращия елемент върху газовата динамика и консумативите на буталния двигател на вътрешното изгаряне, както и разкриват хидродинамичните фактори на топлообмена на пулсиращия поток с пулсиращия поток стените на канала на входа.

2. Разработване на метод за увеличаване на въздушния поток през входна система от бутален двигател.

3. Намерете основните модели на промени в мигновния локален пренос на топлина в входния път на буталния двигател в условията на хидродинамична нестационарност в класическия цилиндричен канал, и също така разберете ефекта на конфигурацията на всмукателната система (профилирани вложки и въздушни филтри) На този процес.

4. За да обобщим експерименталните данни за мигновен локален коефициент на пренос на топлина в всмукателния колектор за всмукване на бутала.

За да разрешите задачите за разработване на необходимите техники и създайте експериментална настройка под формата на модел на инструмент на двигателя на буталото, оборудван с контролна и измервателна система с автоматично събиране и обработка на данни.

2. Описание на експерименталните методи за инсталиране и измерване

2.1 Експериментална инсталация за изследване на входящия вход

Характерните характеристики на проучваните входящи процеси са тяхната динамика и честота поради широк диапазон на въртене на двигателя на двигателя на двигателя и нарушаване на хармонията на тези периодични издания, свързани с неравностите на движението на буталото и се променят конфигурацията на приемната пътека в зоната сглобяване на клапан. Последните два фактора са свързани помежду си с действието на механизма за разпределение на газа. Възпроизведете такива условия с достатъчна точност само с помощта на полетен модел.

Тъй като газо-динамичните характеристики са функции на геометрични параметри и режима фактори, динамичен модел Трябва да съответства на двигателя на определено измерение и да работи в характерни високоскоростни режими на теста на коляновия вал, но вече от външен енергиен източник. Въз основа на тези данни е възможно да се разработят и оценяват общата ефективност от определени решения, насочени към подобряване на пътя на всмукване като цяло, както и отделно от различни фактори (конструктивен или режим).

За изследване на газовата динамика и пренос на топлина в буталния двигател на вътрешното изгаряне, експериментална инсталация е проектирана и произведена. Разработен е на базата на модела на двигателя 11113 VAZ - OKA. При създаването на инсталацията се използват прототипни детайли, а именно: свързващ прът, бутален пръст, бутало (с усъвършенстване), газоразпределителен механизъм (с усъвършенстване), шайба на коляновия вал. Фигура 2.1 показва надлъжен разрез на експерименталната инсталация и на фигура 2.2 е нейният напречен разрез.

Фиг. 2.1. Дамски съкращения на експерименталната инсталация:

1 - еластично съединение; 2 - гумени пръсти; 3 - Род цервикант; 4 - естествена шийка; 5 - буза; 6 - NUT M16; 7 - противотежест; 8 - NUT M18; 9 - Местни лагери; 10 - Подкрепя; 11 - лагери, свързващи пръчка; 12 - прът; 13 - бутален пръст; 14 - бутало; 15 - цилиндрова ръкав; 16 - цилиндър; 17 - База на цилиндъра; 18 - цилиндрови опори; 19 - флуоропласт пръстен; 20 - референтна плоча; 21 - шестоъгълник; 22 - Уплътнение; 23 - входен клапан; 24 - дипломиран клапан; 25 - разпределителен вал; 26 - ролка разпределителна вата.Шпакловка 27 - шайба на коляновия вал; 28 - зъбен ремък; 29 - валяк; 30 - обтегач; 31 - обтягащ болт; 32 - Maslenka; 35 - асинхронен двигател

Фиг. 2.2. Напречна част от експерименталната инсталация:

3 - Род цервикант; 4 - естествена шийка; 5 - буза; 7 - противотежест; 10 - Подкрепя; 11 - лагери, свързващи пръчка; 12 - прът; 13 - бутален пръст; 14 - бутало; 15 - цилиндрова ръкав; 16 - цилиндър; 17 - База на цилиндъра; 18 - цилиндрови опори; 19 - флуоропласт пръстен; 20 - референтна плоча; 21 - шестоъгълник; 22 - Уплътнение; 23 - входен клапан; 25 - разпределителен вал; 26 - Ремъчна шайба; 28 - зъбен колан; 29 - валяк; 30 - обтегач; 31 - обтягащ болт; 32 - Maslenka; 33 - вмъкване на профилиран; 34 - измервателен канал; 35 - асинхронен двигател

Както може да се види от тези изображения, инсталацията е естествен модел на двуцилиндър вътрешния двигател с вътрешно горене 7.1 / 8.2. Въртящ момент S. асинхронен двигател Предава се чрез еластичен съединител 1 с шест гумени пръсти 2 на коляновия вал на оригиналния дизайн. Използваният съединител е способен значително да компенсира нечувствителността на съединението от шахтите на асинхронния двигател и коляновия вал на инсталацията, както и за намаляване на динамичните натоварвания, особено при стартиране и спиране на устройството. Коляновият вал от своя страна се състои от свързваща щанга на шийките 3 и две местни шийки 4, които са свързани помежду си с бузите 5. Развачът на пръчката се притиска с опъване в бузата и се фиксира с помощта на ядки 6. За да намалите вибрациите на бузите са закрепени с анти-тестови болтове 7. Аксиалното движение на коляновия вал възпрепятства гайката 8. Коляновият вал се върти в затворените подвижни лагери 9, фиксирани в опорите 10. Два затворени подвижни носещи се 11 са монтирани върху свързваща врата, върху която Свързващият прът 12 е монтиран. Използването на две лагери в този случай е свързано с размера на площадката на свързващия прът. Към свързващия прът с бутален пръст 13, буталото 14 е монтирано на чугунената втулка 15, притиснато в стоманения цилиндър 16. Цилиндърът е монтиран на основата 17, който се поставя върху цилиндъра поддържа 18. един широк Флуоропластичен пръстен 19 е монтиран на буталото, вместо три стандартна стомана. Използването на чугун и флуоропластичен пръстен осигурява рязък спад в триенето по двойки бутални ръкави и бутални пръстени - ръкав. Ето защо, експерименталната инсталация може да работи за кратко време (до 7 минути) без система за смазване и охлаждане на работните честоти на въртенето на коляновия вал.

Всички основни фиксирани елементи на експерименталната инсталация са фиксирани върху основната плоча 20, която с два шестоъгълника са прикрепени към лабораторната маса. За да намалите вибрациите между шестоъгълника и опорната плоча има гумено уплътнение 22.

Механизмът на експерименталната инсталация на времето е зает от автомобила VAZ 11113: блок главата се използва с някои модификации. Системата се състои от входящ клапан 23 и изпускателен вентил 24, които се контролират с помощта на разпределителен вал 25 с ролка 26. макарата на разпределителната вала е свързана с шайба 27 с зъбен ремък 28. На коляновия вал на инсталационния вал постави две Ремъчни шайби за опростяване на напрежението на задвижващия вал. Натоварването на колана се контролира от валяк 29, който е монтиран на рафта 30, а обтегачният болт 31. MaSliners 32 са монтирани за смазване на лагерите на разпределителния образ, маслото, от които гравитацията става към плъзгащите лагери на разпределителния вал.

Подобни документи

    Характеристики на приема на валидния цикъл. Влиянието на различни фактори върху пълненето на двигатели. Налягане и температура в края на приема. Коефициентът на остатъчния газ и факторите, определящи неговата величина. Вход при ускоряване на движението на буталото.

    лекция, добавена 30.05.2014

    Размерите на дебитните секции в шийките, камери за входни клапани. Профилиране на ненапрегната камера водеща един входен клапан. Скорост на натиска в ъгъла на юмрука. Изчисляване на изворите на клапана и разпределителния вал.

    работа на курса, добавена 03/28/2014

    Общ Върху двигателя с вътрешно горене, неговото устройство и характеристики на работата, предимствата и недостатъците. Работен процес на двигателя, методи за запалване на гориво. Търсене на упътвания за подобряване на дизайна на двигател с вътрешно горене.

    резюме, добавен 06/21/2012

    Изчисляване на процесите на пълнене, компресия, изгаряне и разширяване, определяне на индикатор, ефективни и геометрични параметри на двигателя с авиационен бутал. Динамично изчисляване на механизма за свързване на манивела и изчисление върху силата на коляновия вал.

    курсов курс, добавен 01/17/2011

    Проучване на характеристиките на пълнежа, компресиране, изгаряне и разширителен процес, които пряко влияят на работния поток на двигателя с вътрешно горене. Анализ на индикатор и ефективни показатели. Сграда индикаторни диаграми работния процес.

    курсова работа, добавена 30.10.2013

    Методът за изчисляване на коефициента и степента на неравномерност на захранването на буталната помпа с определени параметри, изготвяне на съответната графика. Условия за всмукване на бутални помпа. Хидравлично изчисление на инсталацията, основните параметри и функции.

    допълнителна проверка 03/07/2015

    Разработване на проект на 4-цилиндров V-образен бутален компресор. Топлинното изчисляване на монтажа на компресора на хладилната машина и определянето на неговия газов тракт. Изграждане на индикатор и електрическа диаграма на устройството. Силата изчисляване на детайлите на буталото.

    работа на курса, добавена 01/25/2013

    Общи характеристики на веригата на аксиално-бутална помпа с наклонен блок цилиндри и диск. Анализ на основните етапи на изчисляване и проектиране на аксиална бутална помпа с наклонен блок. Разглеждане на дизайна на универсалния регулатор на скоростта.

    курсова работа, добавена 01/10/2014

    Проектиране на устройство за операции по смилане. Метода за получаване на детайла. Строителство, принцип и условия за работа на аксиална бутална помпа. Изчисляване на грешката на измервателния уред. Технологична схема за сглобяване на електрическия механизъм.

    теза, добавена 05/26/2014

    Разглеждане на термодинамични цикли на двигателите с вътрешно горене с топлоснабдяване при постоянен обем и налягане. Изчисляване на топлинна двигател D-240. Изчисляване на входящите процеси, компресия, горене, разширяване. Ефективно изпълнение на работата на DVS.

Използване на резонанс изпускателни тръби На моторните модели на всички класове ви позволява драстично да увеличите спортните резултати на състезанието. Въпреки това, геометричните параметри на тръбите се определят като правило, по метода на изпитване и грешка, тъй като досега няма ясно разбиране и ясна интерпретация на процесите, които се срещат в тези газо-динамични устройства. И в малкото източници на информация по този повод са дадени противоречиви заключения, които имат произволно тълкуване.

За подробно проучване на процесите в тръбите на персонализирано отработени газове е създадена специална инсталация. Състои се от щанд за движение на двигатели, адаптер, адаптер - тръба с фитинги за избор на статично и динамично налягане, два пиезоелектрични сензора, дву-лъч осцилоскоп C1-99, камера, резонансна изпускателна тръба от R-15 Двигател с "телескоп" и домашна тръба с черни повърхности и допълнителна топлоизолация.

Натискът в тръбите в изпускателната зона се определя, както следва: двигателят е показан на резонансни ревизии (26000 rpm), като на осцилоскоп са показани данни от пиезоелектричните сензори, прикрепени към окрусещите на пиезоелектричните сензори, честотата на почивката на който се синхронизира с честотата на въртене на двигателя и осцилограмата е записана на филма.

След като филмът се проявява в контрастен разработчик, изображението се прехвърля в сцеплението в мащаба на екрана на осцилоскопа. Резултатите за тръбата от двигателя R-15 са показани на фигура 1 и за домашна тръба с черно и допълнителна топлоизолация - на фигура 2.

Относно графиците:

P DYN - Динамично налягане, ст - статично налягане. OSO - отваряне на прозореца на отработените газове, NMT - долната мъртва точка, връзката е затварянето на прозореца на отработените газове.

Анализът на кривите ви позволява да идентифицирате разпределението на налягането при входа на резонансната тръба във функцията на фазата на въртене на коляновия вал. Увеличаването на динамичното налягане от момента, в който прозорецът на изпускане е открит с диаметъра на изходната дюза 5 mm се появява за R-15 приблизително 80 °. И минимумът е в рамките на 50 ° - 60 ° от дъното на мъртвата точка при максимално прочистване. Повишено налягане в отразената вълна (от минимум) по време на затварянето на прозореца на отработените газове е около 20% от максималната стойност на R. закъснение при действието на отразената изпускателна вълна - от 80 до 90 °. За статично налягане се характеризира с увеличаване на 22 ° C "плато" на графиката до 62 ° от отвора на прозореца на отработените газове, като минимум 3 ° от дъното на мъртвата точка. Очевидно е, че в случай на използване на подобна изпускателна тръба, прочистените колебания се появяват при 3 ° ... 20 ° след дъното на мъртвата точка и по никакъв начин 30 ° след като се смяташе откриването на прозореца на отработените газове.

Тези проучвания на домашната тръба се различават от данните R-15. Увеличеното динамично налягане до 65 ° от отвора на прозореца на отработените газове е придружено от минимум 66 ° след дъното на мъртвата точка. В същото време увеличаването на натиска на отразената вълна от минимума е около 23%. Зареждането в действието на отработените газове е по-малко, което вероятно се дължи на увеличаване на температурата в системата за топлоизолация и е около 54 °. Изчистването на изчисленията са маркирани на 10 ° след дъното на мъртвата точка.

Сравняване на графики, може да се отбележи, че статичното налягане в топлоизолираната тръба по време на затварянето на прозореца на отработените газове е по-малко от R-15. Въпреки това, динамичното налягане има максимум отразена вълна от 54 ° след затварянето на прозореца на отработените газове и в R-15, този максимален изместен с 90 "! Разликите са свързани с разликата в диаметрите на изпускателните тръби: върху R-15, както вече споменахме, диаметърът е 5 mm, а на топлоизолирания - 6.5 mm. Освен това, поради по-напредналата геометрия на тръбата R-15, коефициентът на възстановяване на статичното налягане е повече.

Коефициентът на ефективност на резонансната изпускателна тръба до голяма степен зависи от геометричните параметри на самата тръба, напречното сечение на изпускателната тръба на двигателя, температурния режим и фазите на разпределение на газ.

Използването на контролни преходи и подбор на температурния режим на резонансната изпускателна тръба ще позволи да се измести максималното налягане на отразената вълна на отработените газове до момента, в който е затворен прозорецът за отсърчаване и по този начин рязко увеличаване на ефективността му.

Паралелно, развитието на опустошителните изпускателни системи, развитите системи, конвенционално наричани "заглушители", но не са толкова много за намаляване на нивото на шума на операционния двигател, колко да променят нейните мощни характеристики (мощност на двигателя, или. \\ T неговия въртящ момент). В същото време задачата за шума за шиене отиде във втория план, такива устройства не се намаляват и не могат значително да намалят шума на двигателя и често ги подобряват.

Работата на такива устройства се основава на резонансни процеси в самите "шумозаглушители", притежаващи, като всяко кухо тяло със свойствата на лабаклетните резонатор. Благодарение на вътрешните резонанси на изпускателната система, два паралелни проблема се решават наведнъж: почистването на цилиндъра се подобрява от остатъците от горимата смес в предишния такт, а пълненето на цилиндъра е нова част от най-запалимия смес за следващия такт за компресия.
Подобрението при почистването на цилиндъра се дължи на факта, че газовият стълб в дипломатория, който отбеляза някаква скорост по време на изхода на газовете в предишния такт, поради инерция, като бутало в помпата, продължава да суче Останките на газовете от цилиндъра дори след като налягането на цилиндъра идва с налягане в колесника. В същото време се случва друг, индиректен ефект: поради това допълнително помпено помпване, налягането в цилиндъра намалява, което благоприятно влияе на следващия такт за прочистване - в цилиндъра, той попада малко повече от прясно запалима смес, отколкото да се получи, ако може да се получи Налягането на цилиндъра е равно на атмосферното.

В допълнение, обратната вълна на налягане на отработените газове, отразена от объркването (заден конус на изпускателната система) или смес (газо-динамична диафрагма), монтирана в кухината на шума, връщайки се обратно към прозореца на цилиндъра по това време От затварянето му, допълнително "развълнувана" прясна горивна смес в цилиндъра, още по-увеличаване на пълнежа му.

Тук трябва ясно да разберете, че не става дума за реципрочното движение на газове в изпускателната система, а за процеса на осцилация на вълната в самия газ. Газът се движи само в една посока - от изпускателния прозорец на цилиндъра по посока на изхода на изхода на изпускателната система, първо с остри тира, чиято честота е равна на оборота на превозното средство, след това постепенно амплитудата на тях Дрехът се намалява, в границата се превръща в равномерно ламинарно движение. И "Там и тук" вълните под налягане вървят, естеството на което е много подобно на акустичните вълни във въздуха. И скоростта на тези вибрации на налягането е близо до скоростта на звука в газа, като се вземат предвид неговите свойства - предимно плътност и температура. Разбира се, тази скорост е малко по-различна от известната стойност на скоростта на звука във въздуха, при нормални условия, равни на около 330 m / s.

Строго говорейки, процесите, които текат в изпускателните системи на DSV не са правилно наречени чисти акустични. По-скоро те се подчиняват на законите, използвани за описване на ударни вълни, макар и слаби. И това вече не е стандартно газов и термодинамика, която е ясно подредена в рамките на изотермични и адиабатни процеси, описани от законите и уравненията на Бойла, Мариота, Клаперон и други като тях.
Аз се натъкнах на тази идея няколко случая, свидетел, за който съм аз. Същността на тях е следната: резонанс на нагласи от високоскоростни и състезателни двигатели (AVIA, съд и авто), работещи по изпълнителните режими, в които двигателите понякога са непроверени до 40 000-45.000 rpm, и дори по-високи, \\ t Те започват "плаване" - те буквално са в очите променят формата, "pinpoint", сякаш не са направени от алуминий, а от пластилин и дори трито за печене! И това се случва на резонансния връх на "близнака". Но е известно, че температурата на отработените газове при изхода на изпускателния прозорец не надвишава 600-650 ° С, докато точката на топене на чист алуминий е малко по-висока - около 660 ° С и нейните сплави и др. В същото време (най-важното!), По-често се разтопява и не-изработената тръба мегафон се деформира, в непосредствена близост до прозореца на отработените газове, където изглежда най-много телаи най-лошите температурни условия, и обратната конусово объркана област, към която изпускателният газ вече се намалява с много по-малка температура, което намалява поради разширяването му в изпускателната система (помните основните закони на газовата динамика) и. \\ t Освен това тази част от ауспуха обикновено се издуха от въздушния поток на инцидента, т.е. Допълнително охлаждане.

Дълго време не можех да разбера и обясня това явление. Всичко падна на място, след като случайно удари книгата, в която бяха описани процесите на ударни вълни. Има такава специална секция на газовата динамика, чийто ход се чете само на специални кранове на някои университети, които подготвят експлозивни техници. Нещо подобно се случва (и проучено) в авиацията, където преди половин век, на зората на свръхзвукови полети, те също срещнаха някои необясними факти за унищожаване на дизайна на планера на самолета по време на свръхзвуков преход.

Газо-динамичният надзор включва методи за увеличаване на плътността на зареждането на входа чрез употреба:

· Кинетичната енергия на въздуха, която се движи по приемащото устройство, в което се превръща в потенциалното налягане на налягането при спиране на потока - високоскоростен надзор;

· Процеси на вълни в всмукателни тръбопроводи -.

В термодинамичния цикъл на двигателя, без да се увеличава началото на процеса на компресия при налягане пс. 0, (еднаква атмосферна). В термодинамичния цикъл на буталния двигател с газо-динамичен надзор, началото на процеса на компресия се осъществява при налягане p K. поради увеличаването на налягането на работната течност извън цилиндъра от пс. 0 be. p K.. Това се дължи на трансформацията на кинетичната енергия и енергията на вълновите процеси извън цилиндъра в потенциалната енергия на налягането.

Един от енергийните източници за увеличаване на налягането в началото на компресията може да бъде енергията на въздушния поток на инцидента, който се осъществява, когато самолетът, автомобилът и т.н. Съответно добавянето в тези случаи се нарича висока скорост.

Високоскоростен надзор Въз основа на аеродинамични модели на трансформация на високоскоростен въздушен поток в статично налягане. Структурно, тя се реализира като дюза за всмукване на дифузор, насочена към теглене на въздушен поток при шофиране превозно средство. Теоретично увеличаване на налягането δ p K.=p K. - пс. 0 зависи от скоростта ° С. H и плътност ρ 0 инцидент (движещ се) въздушен поток

Високоскоростният надзор намира се използва главно на въздухоплавателни средства с бутални двигатели и спортни автомобиликъдето скоростта на скоростта са повече от 200 км / ч (56 m / s).

Следните сортове газ-динамично наблюдение на двигателите се основават на използването на инерционни и вълни в входа на двигателя.

Инерционно или динамично намаляване се осъществява при сравнително висока скорост на движеща се прясна такса в тръбопровода ° С. TR. В този случай уравнението (2.1) отнема

където ξ t е коефициент, който отчита устойчивостта на движението на газ по дължина и местно.

Истинска скорост ° С. Газовият поток на газ в всмукателните тръбопроводи, за да се избегнат повишени аеродинамични загуби и влошаване на пълнежа на цилиндрите с прясно зареждане, не трябва да надвишава 30 ... 50 m / s.

Честотата на процесите в цилиндрите на буталните двигатели е причина за осцилаторни динамични явления в газови пътеки. Тези явления могат да се използват за значително подобряване на основните показатели за двигатели (литър сила и икономика.

Инерционните процеси винаги са придружени от вълнични процеси (колебания при налягане), произтичащи от периодичното отваряне и затваряне на входните клапани на системата за обмен на газ, както и движението за връщане на буталата.



В началния етап на входа в входната дюза преди клапана се създава вакуум, а съответната вълна от изливане, достигане на противоположния край на отделния входящ тръбопровод, отразява компресионната вълна. Чрез избиране на дължината и преминаването на отделния тръбопровод, можете да получите пристигането на тази вълна към цилиндъра в най-благоприятния момент преди затваряне на клапана, който значително ще увеличи фактора на пълнене и следователно въртящ момент M E. Двигател.

На фиг. 2.1. Показва се диаграма на настроена всмукателна система. През входната тръба, заобикаляйки дросел клапанВъздухът влиза в приемащия приемник и входните тръбопроводи на конфигурираната дължина към всеки от четирите цилиндри от него.

На практика, това явление се използва в чужди двигатели (фиг. 2.2), както и вътрешни двигатели за леки автомобили с конфигурирани индивидуални входящи тръбопроводи (например ZMZ двигатели), както и на 2H8.5 / 11 диспозиция на a Стационарен електрически генератор, който има един конфигуриран тръбопровод на два цилиндъра.

Най-голямата ефективност на газо-динамичния надзор се извършва с дълги отделни тръбопроводи. Надходящото налягане зависи от координацията на честотата на въртене на двигателя н., дължини на тръбопровода Л. TR и ъгли

огъване на затварянето на всмукателния клапан (орган) φ А.. Тези параметри са свързани с тях

къде е локалната скорост на звука; к. \u003d 1.4 - адиабатен индекс; R. \u003d 0.287 kJ / (kg ∙ градушка.); T. - средна температура на газа за периода на натиск.

Вълните и инерционните процеси могат да осигурят забележимо увеличение в цилиндъра при големи клапанни открития или под формата на увеличаване на зареждането в такт за компресия. Изпълнението на ефективния газо-динамичен надзор е възможен само за тесен обхват на честотата на въртене на двигателя. Комбинацията от фазите на разпределението на газа и дължината на всмукателния тръбопровод трябва да осигури най-голям коефициент на пълнене. Такъв избор на параметри се нарича настройка на входящата система.Тя ви позволява да увеличите мощността на двигателя с 25 ... 30%. Да се \u200b\u200bзапази ефективността на газо-динамичния надзор в по-широк обхват на въртящата се честота на коляновия вал може да се използва различни методи, в частност:

· Прилагане на тръбопровод с променлива дължина л. TR (например телескопичен);

· Превключване от кратък тръбопровод за дълго;

· Автоматично регулиране на фазите на разпределение на газ и др.

Използването на газо-динамично наблюдение на тласък на двигателя обаче е свързано с определени проблеми. Първо, не винаги е възможно да се спазват рационално с достатъчно удължените всмукателни тръбопроводи. Особено трудно е да се направи за двигатели с ниска скорост, защото с намаление на скоростта на въртене, дължината на регулираните тръбопроводи се увеличава. Второ, геометрията на фиксираните тръбопроводи дава динамична настройка само в някои, доста определен диапазон от режим на скорост.

За да се гарантира ефектът в широк диапазон, се използва гладка или стъпка настройка на дължината на конфигурирания път, когато се премества от един режим на скорост в друг. Регулацията на стъпката Използването на специални клапани или ротационни амортисьори се счита за по-надеждна и успешно използвана в автомобилните двигатели на много чуждестранни фирми. Най-често използвайте контрол с превключване в два персонализирани тръбопроводима дължина (фиг. 2.3).

В положението на затворената клапа, съответният режим до 4000 min -1, подаване на въздух от приемниците на системата се извършва по дълъг път (виж фиг. 2.3). В резултат (в сравнение с базовата версия на двигателя без газ-динамичен надзор), кривата на потока на въртящия момент се подобрява на външна характеристика на скоростта (при някои честоти от 2500 до 3500 min -1, въртящият момент се увеличава средно с 10 ... 12%). С увеличаване на скоростта на въртене N\u003e 4000 min -1 захранване превключва в кратък път и това ви позволява да увеличите захранването N e. в номинален режим с 10%.

Има и по-сложни системи за цялост. Например, проектира с тръбопроводи, покриващи цилиндричен приемник с ротационен барабан, имащ прозорци за съобщения с тръбопроводи (фиг. 2.4). Когато цилиндричен приемник се завърти, дължината на тръбопровода се увеличава и обратно, когато се върти по посока на часовниковата стрелка, тя намалява. Въпреки това, прилагането на тези методи значително усложнява дизайна на двигателя и намалява нейната надеждност.

В многоцилиндрови двигатели с конвенционални тръбопроводи, ефективността на газо-динамичния надзор се намалява, което се дължи на взаимното влияние на всмукателните процеси в различни цилиндри. В автомобилните двигатели, всмукателните системи "се настройват" обикновено в максималния режим на въртящия момент, за да увеличат своя запас.

Ефектът от газо-динамичен Superior може да бъде получен и чрез съответната "настройка" на изпускателната система. Този метод открива използването на двигатели с два удара.

За определяне на дължината Л. TR и вътрешен диаметър д. (или секцията за преминаване) на регулируемия тръбопровод е необходимо да се извършват изчисления, като се използват цифрови методи за динамика на газа, описващ нестационарния поток, заедно с изчисляването на работния процес в цилиндъра. Критерият е увеличаването на властта, \\ t

или намаляване на специфичния разход на гориво. Тези изчисления са много сложни. | Повече ▼ прости методи Дефиниции Л. три д. Въз основа на резултатите от експерименталните изследвания.

В резултат на обработката на голям брой експериментални данни за избор на вътрешен диаметър д. Регулируемият тръбопровод се предлага, както следва:

където (μ. Е. Y) max е най-ефективната област на слота за входящия клапан. Дължина Л. Тръбопроводът може да бъде определен по формулата:

Обърнете внимание, че използването на разклонени настроени системи като общ приемник - отделни тръби се оказа много ефективен в комбинация с турбокомпресор.

© 2021 Bugulma-lada.ru - Портал за собственици на автомобили