Сучасні проблеми науки та освіти. Вихлопні системи двигунів внутрішнього згоряння Аналіз газодинамічних процесів вихлопної системи ДВС

Головна / ПДР онлайн

480 руб. | 150 грн. | 7,5 дол. ", MOUSEOFF, FGCOLOR," #FFFFCC ", BGCOLOR," # 393939 ");" onMouseOut \u003d "return nd ();"\u003e Дисертація - 480 руб., доставка 10 хвилин , Цілодобово, без вихідних і свят

Григор'єв Микита Ігорович. Газодинаміка і теплообмін у випускному трубопроводі поршневого ДВС: дисертація ... кандидата технічних наук: 01.04.14 / Григор'єв Микита Ігорович; [Місце захисту: Федеральне державне автономне освітня установа вищої професійної освіти "Уральський федеральний університет імені першого Президента Росії Б. М. Єльцина "http://lib.urfu.ru/mod/data/view.php?d\u003d51&rid\u003d238321].- Єкатеринбург, 2015.- 154 с.

Вступ

ГЛАВА 1. Стан питання і постановка задач дослідження 13

1.1 Типи вихлопних систем 13

1.2 Експериментальні дослідження ефективності випускних систем. 17

1.3 Розрахункові дослідження ефективності випускних систем 27

1.4 Характеристики теплообмінних процесів в випускний системі поршневого ДВС 31

1.5 Висновки та постановка завдань дослідження 37

ГЛАВА 2. Методика дослідження і опис експериментальної установки 39

2.1 Вибір методики дослідження газодинаміки та теплообмінних характеристик процесу випуску поршневого ДВС 39

2.2 Конструктивне виконання експериментальної установки для дослідження процесу випуску в поршневому ДВС 46

2.3 Вимірювання кута повороту і частоти обертання розподільного вала 50

2.4 Визначення миттєвої витрати 51

2.5 Вимірювання миттєвих локальних коефіцієнтів тепловіддачі 65

2.6 Замір надлишкового тиску потоку в випускному тракті 69

2.7 Система збору даних 69

2.8 Висновки до розділу 2 з

ГЛАВА 3. Газодинаміка і витратні характеристики процесу випуску 72

3.1 Газодинаміка і витратні характеристики процесу випуску в поршневому двигуні внутрішнього згоряння без наддуву 72

3.1.1 При трубопроводі з круглим поперечним перерізом 72

3.1.2 Для трубопроводу з квадратним поперечним перерізом 76

3.1.3 З трубопроводом трикутного поперечного перерізу 80

3.2 Газодинаміка і витратні характеристики процесу випуску поршневого двигуна внутрішнього згоряння з наддувом 84

3.3 Висновок до розділу 3 92

ГЛАВА 4. Миттєва тепловіддача в випускному каналі поршневого двигуна внутрішнього згоряння 94

4.1 Миттєва локальна тепловіддача процесу випуску поршневого двигуна внутрішнього згоряння без наддуву 94

4.1.1 З трубопроводом з круглого поперечного перерізу 94

4.1.2 Для трубопроводу з квадратним поперечним перерізом 96

4.1.3 При трубопроводі з трикутним поперечним перерізом 98

4.2 Миттєва тепловіддача процесу випуску поршневого двигуна внутрішнього згоряння з наддувом 101

4.3 Висновки до розділу 4 107

ГЛАВА 5. Стабілізація перебігу в випускному каналі поршневого двигуна внутрішнього згоряння 108

5.1 Гасіння пульсацій потоку в випускному каналі поршневого ДВС за допомогою постійної і періодичної ежекції 108

5.1.1 Придушення пульсацій потоку в випускному каналі за допомогою постійної ежекції 108

5.1.2 Гасіння пульсацій потоку в випускному каналі шляхом періодичної ежекції 112 5.2 Конструктивна і технологічна виконання випускного тракту з ежекцію 117

висновок 120

Список літератури

Розрахункові дослідження ефективності випускних систем

Вихлопна система поршневого ДВС служить для відводу з циліндрів двигуна відпрацьованих газів і підведення їх до турбіни турбокомпресора (в двигунах з наддувом) з метою перетворення залишилася після робочого процесу енергії в механічну роботу на валу ТК. Вихлопні канали виконують загальним трубопроводом, відлитий із сірого або жаростійкого чавуну, або алюмінію в разі наявності охолодження, або з окремих чавунних патрубків. Для запобігання обслуговуючого персоналу від опіків вихлопної трубопровід може охолоджуватися водою або покриватися теплоізоляційним матеріалом. Теплоізольовані трубопроводи більш кращі для двигунів з газотурбінним наддувом так як в цьому випадку зменшуються втрати енергії випускних газів. Так як при нагріванні і охолодженні довжина випускного трубопроводу змінюється, то перед турбіною встановлюють спеціальні компенсатори. на великих двигунах компенсаторами з'єднують також окремі секції випускних трубопроводів, які з технологічних міркувань роблять складовими.

Відомості про параметри газу перед турбіною турбокомпресора в динаміці протягом кожного робочого циклу ДВС з'явилися ще в 60-х роках. Відомі також деякі результати досліджень залежності миттєвої температури відпрацьованих газів від навантаження для чотиритактного двигуна на невеликій ділянці повороту коленвала, датовані тим же періодом часу. Однак ні в цьому, ні в інших джерелах не присутні такі важливі характеристики як локальна інтенсивність тепловіддачі і швидкість потоку газу в вихлопному каналі. У дизелів з наддувом можуть бути три види організації підведення газу з головки циліндрів до турбіни: система постійного тиску газу перед турбіною, імпульсна система і система наддуву з перетворювачем імпульсів.

В системі постійного тиску гази з усіх циліндрів виходять в загальний випускний колектор великого обсягу, який виконує роль ресивера і в значній мірі згладжує пульсації тиску (рисунок 1). Під час випуску газу з циліндра в випускному патрубку утворюється хвиля тиску великої амплітуди. Недоліком такої системи є сильне зниження працездатності газу при перетікання його з циліндра через колектор в турбіну.

При такій організації випуску газів з циліндра і підведення їх до сопловому апарату турбіни зменшуються втрати енергії, пов'язані з їх раптовим розширенням при витіканні з циліндра в трубопровід і дворазовим перетворенням енергії: кінетичної енергії випливають з циліндра газів в потенційну енергію їх тиску в трубопроводі, а останньою знову в кінетичну енергію в сопловому апараті в турбіні, як це відбувається в випускний системі з постійним тиском газу на вході в турбіну. В результаті цього при імпульсної системі збільшується розташовується робота газів в турбіні і зменшується їх тиск під час випуску, що дозволяє зменшити витрати потужності на здійснення газообміну в циліндрі поршневого двигуна.

Слід зазначити, що при імпульсному наддуванні істотно погіршуються умови перетворення енергії в турбіні внаслідок нестаціонарності потоку, що веде до зниження її ККД. До того ж важко визначення розрахункових параметрів турбіни через змінних тиску і температури газу перед турбіною і за нею, і роздільного підведення газу до її сопловому апарату. Крім того, ускладнюється конструкція як самого двигуна, так і турбіни турбокомпресора через введення роздільних колекторів. Внаслідок цього ряд фірм при масовому виробництві двигунів з газотурбінним наддувом застосовує систему наддуву з постійним тиском перед турбіною.

Система наддуву з перетворювачем імпульсів є проміжною і поєднує вигоди від пульсацій тиску у випускному колекторі (зменшення роботи виштовхування і поліпшення продувки циліндра) з виграшем від зниження пульсацій тиску перед турбіною, що підвищує ККД останньої.

Малюнок 3 - Система наддуву з перетворювачем імпульсів: 1 - патрубок; 2 - сопла; 3 - камера; 4 - дифузор; 5 - трубопровід

В цьому випадку випускні гази по патрубкам 1 (рисунок 3) підводяться через сопла 2, в один трубопровід, який об'єднує випуски з циліндрів, фази яких не накладаються одна на іншу. У певний момент часу імпульс тиску в одному з трубопроводів досягає максимуму. При цьому максимальної стає і швидкість витікання газу з сопла, з'єднаного з цим трубопроводом, що призводить внаслідок ефекту ежекції до розрідження в іншому трубопроводі і тим самим полегшує продувку циліндрів, приєднаних до нього. Процес виділення з сопел повторюється з великою частотою, тому в камері 3, яка виконує роль змішувача і демпфера, утворюється більш-менш рівномірний потік, кінетична енергія якого в дифузорі 4 (відбувається зниження швидкості) перетвориться в потенційну за рахунок підвищення давленіяе. З трубопроводу 5 гази надходять в турбіну при майже постійному тиску. Складніша конструктивна схема перетворювача імпульсів, що складається зі спеціальних сопел на кінцях випускних патрубків, що об'єднуються загальним дифузором, показана на рисунок 4.

Перебіг в випускному трубопроводі характеризується вираженою нестационарностью, викликаної періодичністю самого процесу випуску, і нестационарностью параметрів газу на кордонах «випускний трубопровід -ціліндр» і перед турбіною. Поворот каналу, злам профілю та періодична зміна його геометричних характеристик на вхідному ділянці клапанної щілини служать причиною відриву прикордонного шару і утворення великих застійних зон, розміри яких змінюються в часі. У застійних зонах утворюється ще одне протягом з великомасштабними пульсуючими вихорами, які взаємодіють з основною течією в трубопроводі і в значній мірі визначають витратні характеристики каналів. Нестационарность потоку проявляється в випускному каналі і при стаціонарних граничних умовах (при фіксованому клапані) в результаті пульсації застійних зон. Розміри нестаціонарних вихорів і частоту їх пульсацій достовірно можна визначити тільки експериментальними методами.

Складність експериментального вивчення структури нестаціонарних вихрових потоків змушує конструкторів і дослідників користуватися при виборі оптимальної геометрії випускного каналу методом порівняння між собою інтегральних витратних і енергетичних характеристик потоку, одержуваних зазвичай при стаціонарних умовах на фізичних моделях, тобто при статичної продувки. Однак обгрунтування достовірності таких досліджень не наводиться.

В роботі представлені експериментальні результати вивчення структури потоку в випускному каналі двигуна та проведено порівняльний аналіз структури і інтегральних характеристик потоків при стаціонарних і нестаціонарних умовах.

Результати випробувань великого числа варіантів випускних каналів свідчать про недостатню ефективність традиційного підходу до профілізації, заснованого на уявленнях про стаціонарному перебігу в колінах труб і коротких патрубків. Нерідкі випадки невідповідності прогнозованих і дійсних залежностей витратних характеристик від геометрії каналу.

Вимірювання кута повороту і частоти обертання розподільного вала

Слід зазначити, що максимальні відмінності значень тр, визначених у центрі каналу і близько його стінки (розкид по радіусу каналу) спостерігаються в контрольних перетинах, близьких до входу в досліджуваний канал і досягають 10,0% від ipi. Таким чином, якщо змушені пульсації потоку газу для 1Х до 150 мм були б з періодом багато меншим, ніж ipi \u003d 115 мс, то протягом варто було б характеризувати, як протягом з високим ступенем нестаціонарності. Це свідчить про те, що перехідний режим течії в каналах енергетичної установки ще не завершився, а на протягом уже впливає чергове збурення. І навпаки, якщо пульсації течії були б з періодом багато більшим, ніж Тр, то протягом варто було б вважати квазістаціонарним (з низьким ступенем нестаціонарності). В цьому випадку до виникнення обурення перехідний гідродинамічний режим встигає завершитися, а протягом вирівнятися. І нарешті, в разі, якби період пульсацій потоку був близьким до значення Тр, то протягом варто було б характеризувати як помірно нестаціонарне з наростаючою ступенем нестаціонарності.

Як приклад можливого використання запропонованих для оцінки характерних часів, розглянуто протягом газу в випускних каналах поршневих ДВС. Спочатку звернемося до малюнка 17, на якому зображено залежність швидкості потоку wx від кута повороту коленвала ф (рисунок 17, а) і від часу т (рисунок 17, б). Дані залежності отримано на фізичної моделі одноциліндрового ДВС розмірності 8,2 / 7,1. З малюнка видно, що уявлення залежності wx \u003d f (ф) є малоінформативним, оскільки недостатньо точно відображає фізичну сутність процесів, що відбуваються в випускному каналі. Однак саме в такій формі дані графіки прийнято представляти в галузі двигунобудування. На наш погляд більш коректно використовувати для аналізу тимчасові залежності wx \u003d / (т).

Проаналізуємо залежність wx \u003d / (т) для п \u003d 1500 хв "1 (рисунок 18). Як видно, при даній частоті обертання коленвала тривалість всього процесу випуску становить 27,1 мс. Перехідний гідродинамічний процес в випускному каналі починається після відкриття випускного клапана. при цьому можна виділити найбільш динамічний ділянку підйому (інтервал часу, протягом якого відбувається різке зростання швидкості потоку), тривалість якого становить 6,3 мс. Після чого зростання швидкості потоку змінюється його спадом. Як було показано раніше (рисунок 15), для даної конфігурації гідравлічної системи час релаксації становить 115-120 мс, т. е. значно більше, ніж тривалість ділянки підйому. Таким чином, слід вважати, що початок випуску (ділянка підйому) відбувається з високим ступенем нестаціонарності. 540 ф, град ПКВ 7 а)

Газ подавався із загальної мережі по трубопроводу, на якому встановлений манометр 1 для контролю тиску в мережі і вентиль 2, для регулювання витрати. Газ надходив в бак-ресивер 3 об'ємом 0,04 м3, в ньому була розміщена вирівнює решітка 4 для гасіння пульсацій тиску. З бака-ресивера 3 газ по трубопроводу подавався в циліндр-Дуттьовий камеру 5, в якій був встановлений хонейкомб 6. Хонейкомб представляв собою тонку решітку, і призначався для гасіння залишкових пульсацій тиску. Циліндр-дутьевая камера 5 була прикріплена до блоку циліндрів 8, при цьому внутрішня порожнину циліндр-дутьевой камери поєднувалася з внутрішньою порожниною головки блоку циліндрів.

Після відкриття випускного клапана 7 газ з імітаційної камери виходив через випускний канал 9 в вимірювальний канал 10.

На малюнку 20 більш детально показана конфігурація випускного тракту експериментальної установки із зазначенням місць встановлення датчиків тиску і зондів термоанемометра.

У зв'язку обмеженою кількістю інформації по динаміці процесу випуску в якості вихідної геометричної бази був обраний класичний прямий випускний канал з круглим поперечним перерізом: до голівки блоку циліндрів 2 була прикріплена на шпильках досвідчена випускна труба 4, довжина труби становила 400 мм, а діаметром 30 мм. У трубі був просвердлений три отвори на відстанях L \\, Ьг і Ь'відповідно 20,140 і 340 мм для установки датчиків тиску 5 і датчиків термоанемометра 6 (рисунок 20).

Малюнок 20 - Конфігурація випускного каналу експериментальної установки і місця установки датчиків: 1 - циліндр - дутьевая камера; 2 - головка блоку циліндрів; 3 - випускний клапан; 4 - досвідчена випускна труба; 5 - датчики тиску; 6 - датчики термоанемометра для вимірювання швидкості потоку; L - довжина випускної труби; Ц_3- відстані до місць установки датчиків термоанемометра від випускного вікна

Система вимірювань установки дозволяла визначати: поточний кут повороту і частоту обертання коленвала, миттєву витрату, миттєвий коефіцієнт тепловіддачі, надлишковий тиск потоку. Методики визначення цих параметрів описані нижче. 2.3 Вимірювання кута повороту і частоти обертання розподільного

Для визначення частоти обертання і поточного кута повороту розподільного валу, а також моменту знаходження поршня у верхній і нижній мертвих точках був застосований тахометричних датчик, схема установки, якого представлена \u200b\u200bна малюнку 21, так як перераховані вище параметри необхідно однозначно визначати при дослідженні динамічних процесів в ДВС . 4

Тахометричних датчик складався з зубчастого диска 7, який мав тільки два зуба розташованих один навпроти одного. Диск 1 був встановлений з на вал електродвигуна 4 так, щоб один з зубів диска відповідав положенню поршня у верхній мертвій точці, а інший відповідно нижній мертвій точці і кріпився до валу допомогою муфти 3. Вал електродвигуна і розподільний вал поршневого двигуна були з'єднані ремінною передачею.

При проходженні одного з зубів поблизу від індуктивного датчика 4, закріпленого на штативі 5, на виході з індуктивного датчика утворюється імпульс напруги. За допомогою цих імпульсів можна визначити поточний стан розподільного вала і відповідно визначити положення поршня. Щоб сигнали, відповідні НМТ і ВМТ, відрізнялися, один від одного зуби були виконані відмінною один від одного конфігурації, за рахунок чого сигнали на виході з індуктивного датчика мали різну амплітуду. Сигнал, що отримується на виході з індуктивного датчика, показаний на малюнку 22: імпульс напруги меншої амплітуди відповідає положенню поршня в ВМТ, а імпульс більш високої амплітуди відповідно до положення в НМТ.

Газодинаміка і витратні характеристики процесу випуску поршневого двигуна внутрішнього згоряння з наддувом

У класичній літературі з теорії робочих процесів і конструювання ДВС турбокомпресор в основному розглядається в якості найбільш ефективний спосіб форсування двигуна, за рахунок збільшення кількості повітря, що надходить в циліндри двигуна.

Необхідно відзначити, що в літературних джерелах вкрай рідко розглядається вплив турбокомпресора на газодинамічні і теплофізичні характеристики потоку газів випускному трубопроводі. В основному в літературі турбіну турбокомпресора розглядають з спрощеннями, як елемент системи газообміну, який надає гідравлічний опір на потік газів на виході з циліндрів. Однак, очевидно, що турбіна турбокомпресора грає важливу роль у формуванні потоку відпрацьованих газів і має суттєвий вплив на гідродинамічні та теплофізичні характеристики потоку. В даному розділі розглянуті результати дослідження впливу турбіни турбокомпресора на гідродинамічні та теплофізичні характеристики потоку газу в випускному трубопроводі поршневого двигуна.

Дослідження проводилися на експериментальній установці, яка була описана раніше, у другому розділі, головною зміною є установка турбокомпресора типу ТКР-6 з радіально - осьової турбіною (малюнки 47 і 48).

У зв'язку з впливом тиску відпрацьованих газів у випускному трубопроводі на робочий процес турбіни, закономірності зміни даного показника широко вивчені. стиснутий

Установка турбіни турбокомпресора в випускний трубопровід впливає на величину тиску і швидкості потоку в випускному трубопроводі, що наочно видно з графіків залежності тиску і швидкості потоку в випускному трубопроводі з турбокомпресором від кута повороту коленвала (малюнки 49 і 50). Порівнюючи дані залежності з аналогічними залежностями для випускного трубопроводу без турбокомпресора при аналогічних умовах видно, що установка турбіни турбокомпресора в випускний трубопровід призводить до виникнення великої кількості пульсацій на всьому протязі всього такту випуску, викликаних дією лопаток елементів (соплового апарату і робочого колеса) турбіни. Малюнок 48 - Загальний вигляд установки з турбокомпресором

ще однією характерною особливістю даних залежностей є значне підвищення амплітуди коливань тиску і значне зниження амплітуди коливання швидкості в порівнянні з виконанням випускної системи без турбокомпресора. Наприклад, на при частоті обертання коленвала 1500 хв "1 і первісному надмірному тиску в циліндрі 100 кПа максимальне значення тиску газу в трубопроводі з турбокомпресором в 2 рази вище, а швидкість в 4,5 рази нижче, ніж в трубопроводі без турбокомпресора. Збільшення тиску і зниження швидкості в випускному трубопроводі, викликано опором, створюваним турбіною. Варто відзначити, що максимальне значення тиску в трубопроводі з турбокомпресором зміщене щодо максимального значення тиску в трубопроводі без турбокомпресора на величину до 50 градусів повороту коленвала. so

Залежно локальних (1Х \u003d 140 мм) надлишкового тиску рх і швидкості потоку wx в випускному трубопроводі круглого перетину поршневого ДВС з турбокомпресором від кута повороту коленвала р при надмірному тиску випуску р '\u003d 100 кПа для різних частот обертання коленвала:

Було встановлено, що у випускному трубопроводі з турбокомпресором максимальні значення швидкості потоку, нижче, ніж в трубопроводі без нього. Варто відзначити також, що при цьому відбувається зміщення моменту досягнення максимального значення швидкості потоку в бік збільшення кута повороту коленвала, що характерно для всіх режимів роботи установки. У випадку з турбокомпресором пульсації швидкості найбільш виражені при низьких частотах обертання коленвала, що так само характерно і в разі без турбокомпресора.

Аналогічні особливості характерні і для залежності рх \u003d / (р).

Необхідно відзначити, що після закриття випускного клапана швидкість газу в трубопроводі на всіх режимах не знижується до нуля. Установка турбіни турбокомпресора в випускному трубопроводі призводить до згладжування пульсацій швидкості потоку на всіх режимах роботи (особливо при початковому надмірному тиску 100 кПа), як під час такту випуску, так і після його закінчення.

Варто відзначити також, що в трубопроводі з турбокомпресором інтенсивність загасання коливань тиску потоку після закриття випускного клапана вище, ніж без турбокомпресора

Варто припустити, що до описаних вище змін газодинамічних характеристик потоку при установці в випускний трубопровід турбіни турбокомпресора, призводить перебудова потоку в випускному каналі, що неминуче повинно привести до змін теплофізичних характеристик процесі випуску.

В цілому залежності зміни тиску трубопроводі в ДВС з наддувом добре узгоджуються з отриманими раніше.

На малюнку 53 зображені графіки залежності масової витрати G через випускний трубопровід від частоти обертання коленвала п при різних значеннях надлишкового тиску р 'і конфігурацій випускної системи (з турбокомпресором і без нього). Дані графіки були отримані за допомогою методики описаної в.

З графіків, зображених на малюнку 53 видно, що для всіх значень початкового надлишкового тиску масова витрата G газу в випускному трубопроводі приблизно однаковий як при наявності ТК, так і без нього.

На деяких режимах роботи установки відміну витратних характеристик незначно перевищують систематичну похибку, яка для визначення масової витрати потоку становить приблизно 8-10%. 0,0145 G. кг / с

Для трубопроводу з квадратним поперечним перерізом

Система вихлопу з ежекцію функціонує наступним чином. Відпрацьовані гази в систему вихлопу надходять з циліндра двигуна в канал в головці циліндра 7, звідки проходять в випускний колектор 2. У випускному колекторі 2 встановлена \u200b\u200bежекційних трубка 4, в яку повітря подається через електропневмоклапан 5. Таке виконання дозволяє створити область розрядження відразу за каналом в голівці циліндра.

Для того щоб ежекційних трубка не створювала значного гідравлічного опору в колекторі випускному, її діаметр не повинен перевищувати 1/10 діаметру цього колектора. Це також необхідно для того, щоб в випускному колекторі не створювалася критичний режим, і не виникало явище замикання ежектора. Положення осі ежекционной трубки щодо осі випускного колектора (ексцентриситет) вибирається в залежності від конкретної конфігурації системи вихлопу і режиму роботи двигуна. При цьому критерієм ефективності служить ступінь очищення циліндра від відпрацьованих газів.

Пошукові досліди показували, що розрядження (статичний тиск), що створюється в випускному колекторі 2 за допомогою ежекционной трубки 4, має становити не менше 5 кПа. В іншому випадку буде виникати недостатнє вирівнювання пульсуючого потоку. Це може викликати утворення зворотних струмів в каналі, що призведе до зниження ефективності продувки циліндра, і відповідно зниження потужності двигуна. Електронний блок керування двигуном 6 повинен організувати роботу Електропневмоклапан 5 в залежності від частоти обертання коленвала двигуна. Для посилення ефекту ежекції на вихідний кінець ежекционной трубки 4 може бути встановлено дозвуковое сопло.

Виявилося, що максимальні значення швидкості потоку в випускному каналі при постійній ежекції значно вище, ніж без неї (до 35%). Крім того, після закриття випускного клапана в випускному каналі з постійною ежекцію швидкість виходить потоку падає повільніше в порівнянні з традиційним каналом, що свідчить про триваючу очистці каналу від відпрацьованих газів.

На малюнку 63 представлені залежності місцевого об'ємної витрати Vx через випускні канали різного виконання від частоти обертання колінчастого вала п. Вони свідчать про те, що в усьому дослідженому діапазоні частоти обертання колінчастого вала при постійній ежекції зростає об'ємна витрата газу через систему вихлопу, що має привести до кращого очищення циліндрів від відпрацьованих газів і підвищення потужності двигуна.

Таким чином, проведене дослідження показало, що використання у вихлопній системі поршневого ДВС ефекту постійної ежекції покращує газоочистку циліндра в порівнянні з традиційними системами за рахунок стабілізації перебігу у вихлопній системі.

Основним принциповою відмінністю даного способу від методу гасіння пульсацій потоку в випускному каналі поршневого ДВС за допомогою ефекту постійної ежекції є те, що повітря через Ежекційна трубку подається в випускний канал тільки під час такту випуску. Це може бути здійснено за допомогою настройки електронного блоку управління двигуном, або застосування спеціального блоку управління, схема якого показана на малюнку 66.

Дана розроблена автором схема (рисунок 64) застосовується в разі неможливості забезпечення управління процесом ежекції за допомогою блоку управління двигуном. Принцип роботи такої схеми полягає в наступному, на маховик двигуна або на шків розподільного вала повинні бути встановлені спеціальні магніти, положення яких би відповідало моментів відкриття і закриття випускних клапанів двигуна. Магніти повинні бути встановлені різними полюсами щодо біполярного датчика Холла 7, який в свою чергу повинен перебувати в безпосередній близькості від магнітів. Проходячи повз датчиком магніт, встановлений відповідно моменту відкриття випускних клапанів, викликає невеликий електроімпульс, який посилюється за рахунок блоку посилення сигналу 5, і подається на електропневмоклапан, висновки якого з'єднані з висновками 2 і 4 блоки управління, після чого він відкривається і починається подача повітря . відбувається, коли другий магніт проходить поруч з датчиком 7, після чого електропневмоклапан закривається.

Звернемося до експериментальних даних, які були отримані в діапазоні частот обертання колінчастого вала п від 600 до 3000 хв "1 при різних постійних надлишкових тисках рь на випуск (від 0,5 до 200 кПа). У дослідах стиснене повітря з температурою 22-24 С в Ежекційна трубку надходив із заводської магістралі. Розрядження (статичний тиск) за ежекционной трубкою в системі вихлопу становило 5 кПа.

На малюнку 65 показані графіки залежностей місцевого тиску рх (У \u003d 140 мм) і швидкості потоку wx в випускному трубопроводі круглого поперечного перерізу поршневого ДВС з періодичної ежекцію від кута повороту колінчастого вала р при надмірному тиску випуску р '\u003d 100 кПа для різних частотах обертання колінчастого вала .

З даних графіків видно, що протягом усього такту випуску відбувається коливання абсолютного тиску у випускному тракті, максимальні значення коливань тиску досягають 15 кПа, а мінімальні досягають розрядження 9 кПа. Тоді, як в класичному випускному тракті круглого поперечного перерізу ці показники відповідно рівні 13,5 кПа і 5 кПа. Варто відзначити те, що максимальне значення тиску спостерігається при частоті обертання колінчастого вала 1500 хв "1, на інших режимах роботи двигуна коливання тиску не досягають таких величин. Нагадаємо. Що в вихідної трубі круглого поперечного перерізу спостерігався монотонний зростання амплітуди коливань тиску в залежності від збільшення частоти обертання колінчастого вала.

З графіків залежності місцевої швидкості потоку газу w від кута повороту колінчастого вала видно, що значення місцевої швидкості під час такту випуску в каналі з використанням ефекту періодичної ежекції вище, ніж в класичному каналі круглого поперечного перерізу на всіх режимах роботи двигуна. Це свідчить про кращому очищенню випускного каналу.

На малюнку 66 розглянуті графіки порівняння залежностей об'ємної витрати газу від частоти обертання коленвала в трубопроводі круглого поперечного перерізу без ежекції і трубопроводі круглого поперечного перерізу з періодичної ежекцію при різних надлишкових тисках на вході в випускний канал.

УДК 621.436

ВПЛИВ аеродинамічного опору впускних і вихлопних систем АВТОМОБІЛЬНИХ ДВИГУНІВ НА ПРОЦЕСИ газообміну

Л.В. Плотніков, Б.П. Жилкін, Ю.М. Бродів, Н.І. Григор'єв

В роботі представлені результати експериментального дослідження впливу аеродинамічного опору впускних і вихлопних систем поршневих двигунів на процеси газообміну. Досліди проводилися на натурних моделях одноциліндрового ДВС. Описано установки і методика проведення експериментів. Представлені залежності зміни миттєвої швидкості і тиску потоку в газоповітряних трактах двигуна від кута повороту колінчастого вала. Дані отримані при різних коефіцієнтах опору впускних і випускних систем і різних частотах обертання колінчастого вала. На основі отриманих даних були зроблені висновки про динамічні особливості процесів газообміну в двигуні при різних умовах. Показано, що застосування глушника шуму згладжує пульсації потоку і змінює витратні характеристики.

Ключові слова: поршневий двигун, процеси газообміну, динаміка процесу, пульсації швидкості і тиску потоку, глушник шуму.

Вступ

До впускним і випускним системам поршневих двигунів внутрішнього згоряння пред'являється ряд вимог, серед яких основними є максимальне зниження аеродинамічного шуму і мінімальний аеродинамічний опір. Обидва цих показника визначаються у взаємозв'язку конструкції фільтруючого елемента, глушників впуску та випуску, каталітичних нейтралізаторів, наявності наддуву (компресора і / або турбокомпресора), а також конфігурації впускних і випускних трубопроводів і характером перебігу в них. При цьому практично відсутні дані про вплив додаткових елементів впускних і випускних систем (фільтрів, глушників, турбокомпресора) на газодинаміку потоку в них.

У цій статті представлені результати дослідження впливу аеродинамічного опору впускних і вихлопних систем на процеси газообміну стосовно поршневому двигуну розмірності 8,2 / 7,1.

експериментальні установки

і система збору даних

Дослідження впливу аеродинамічного опору газоповітряних систем на процеси газообміну в поршневих ДВС проводилися на натурної моделі одноциліндрового двигуна розмірності 8,2 / 7,1, що приводиться в обертання асинхронним двигуном, Частота обертання колінчастого вала якого регулювалася в діапазоні п \u003d 600-3000 мін1 з точністю ± 0,1%. Більш докладно експериментальна установка описана в.

На рис. 1 і 2 показані конфігурації і геометричні розміри впускного і випускного тракту експериментальної установки, а також місця установки датчиків для вимірювання миттєвих

значень середньої швидкості і тиску потоку повітря.

Для вимірювань миттєвих значень тиску в потоці (статичного) в каналі рх використовувався датчик тиску £ -10 фірми WIKA, швидкодія якого - менше 1 мс. Максимальна відносна середньоквадратична похибка вимірювання тиску становила ± 0,25%.

Для визначення миттєвої середньої по перетину каналу швидкості потоку повітря wх застосовувалися термоанемометри постійної температури оригінальної конструкції, чутливим елементом яких була нихромовая нитка діаметром 5 мкм і довжиною 5 мм. Максимальна відносна середньоквадратична похибка вимірювання швидкості wх становила ± 2,9%.

Вимірювання частоти обертання колінчастого вала здійснювалося за допомогою тахометричного лічильника, що складається з зубчастого диска, закріпленого на колінчастому валі, і індуктивного датчика. Датчик формував імпульс напруги з частотою, пропорційною швидкості обертання валу. За цим імпульсам реєструвалася частота обертання, визначалося положення колінчастого вала (кут ф) і момент проходження поршнем ВМТ і НМТ.

Сигнали з усіх датчиків поступали в аналого-цифровий перетворювач і передавалися в персональний комп'ютер для подальшої обробки.

Перед проведенням експериментів проводилася статична і динамічна тарировка вимірювальної системи в цілому, яка показала швидкодію, необхідне для дослідження динаміки газодинамічних процесів у впускних і вихлопних системах поршневих двигунів. Сумарна середньоквадратична похибка експериментів по впливу аеродинамічного опору газоповітряних систем ДВС на процеси газообміну становила ± 3,4%.

Мал. 1. Конфігурація і геометричні розміри впускного тракту експериментальної установки: 1 - головка циліндрів; 2 -впускная труба; 3 - вимірювальна труба; 4 - датчики термоанемометра для вимірювання швидкості потоку повітря; 5 - датчики тиску

Мал. 2. Конфігурація та геометричні розміри випускного тракту експериментальної установки: 1 - головка циліндрів; 2 - робочий ділянку - випускна труба; 3 - датчики тиску; 4 - датчики термоанемометра

Вплив додаткових елементів на газодинаміку процесів впуску та випуску вивчалося при різних коефіцієнтах опору систем. Опору створювалися за допомогою різних фільтрів впуску та випуску. Так, в якості одного з них використовувався стандартний повітряний автомобільний фільтр з коефіцієнтом опору 7,5. Як інший фільтруючого елемента був обраний тканинний фільтр з коефіцієнтом опору 32. Коефіцієнт опору визначався експериментально за допомогою статичної продувки в лабораторних умовах. Також проводилися дослідження без фільтрів.

Вплив аеродинамічного опору на процес впуску

На рис. 3 і 4 показані залежності швидкості потоку повітря і тиску рх у впускному кана-

ле від кута повороту колінчастого вала ф при різних його частотах обертання і при використанні різних фільтрів впуску.

Встановлено, що в обох випадках (з глушником і без) пульсації тиску і швидкості потоку повітря найбільш виражені при високих частотах обертання колінчастого вала. При цьому у впускному каналі з глушником шуму значення максимальної швидкості потоку повітря, як і слід було очікувати, менше, ніж в каналі без нього. найбільш

м\u003e х, м / с 100

Відкриття 1 III 1 1 III 7 1 £ * ^ 3 111 про

ЕГпцскного клапанп 1 111 II ти. [Зокритір. . 3

§ Р * ■ -1 * £ л Р- до

// 11 "И '\\ 11 I III 1

540 (р. Грае. П.к.й. 720 ВМТ НМТ

1 + 1 Відкриття -гбпцскного-! Клапан А л 1 Г 1 1 1 Закрито ^

1 ДЧ \\. бпцскноео клапана "X 1 + 1

| | А J __ 1 \\ __ MJ \\ у Т -1 1 \\ К / \\ 1 ^ V / \\ / \\ "Ж) у /. \\ / Л / Л" Пч -про- 1 \\ __ V / -

1 1 1 1 1 1 1 | 1 1 ■ ■ 1 1

540 (р. ГраО. П.к.Ь. 720 ВМТ НМТ

Мал. 3. Залежність швидкості повітря wх у впускному каналі від кута повороту колінчастого вала ф при різних частотах обертання колінчастого вала і різних фільтруючих елементах: а - п \u003d 1500 хв-1; б - 3000 хв-1. 1 - без фільтру; 2 - стандартний повітряний фільтр; 3 - тканинний фільтр

Мал. 4. Залежність тиску рх у впускному каналі від кута повороту колінчастого вала ф при різних частотах обертання колінчастого вала і різних фільтруючих елементах: а - п \u003d 1500 хв-1; б - 3000 хв-1. 1 - без фільтру; 2 - стандартний повітряний фільтр; 3 - тканинний фільтр

яскраво це проявилося при високих частотах обертання колінчастого вала.

Після закриття впускного клапана тиск і швидкість потоку повітря в каналі при будь-яких умовах не стають рівними нулю, а спостерігаються деякі їх флуктуації (див. Рис. 3 і 4), що характерно і для процесу випуску (див. Нижче). При цьому установка глушника шуму впуску призводить до зменшення пульсацій тиску і швидкості потоку повітря при всіх умовах як протягом процесу впуску, так і після закриття впускного клапана.

вплив аеродинамічного

опору на процес випуску

На рис. 5 і 6 показані залежності швидкості потоку повітря wx і тиску рх в випускному каналі від кута повороту колінчастого вала ф при різних його частотах обертання і при використанні різних фільтрів випуску.

Дослідження проводилися для різних частот обертання колінчастого вала (від 600 до 3000 хв-1) при різних надлишкових тисках на випуску рь (від 0,5 до 2,0 бар) без глушника шуму і при його наявності.

Встановлено, що в обох випадках (з глушником і без) пульсації швидкості потоку повітря найбільш яскраво проявилися при низьких частотах обертання колінчастого вала. При цьому в випускному каналі з глушником шуму значення максимальної швидкості потоку повітря залишаються при-

мірно такими ж, як і без нього. Після закриття випускного клапана швидкість потоку повітря в каналі при будь-яких умовах не стає рівною нулю, а спостерігаються деякі флуктуації швидкості (див. Рис. 5), що характерно і для процесу впуску (див. Вище). При цьому установка глушника шуму на випуску призводить до істотного збільшення пульсацій швидкості потоку повітря при будь-яких умовах (особливо при рь \u003d 2,0 бар) як під час процесу випуску, так і після закриття випускного клапана.

Слід зазначити протилежний вплив аеродинамічного опору на характеристики процесу впуску в ДВС, де при використанні повітряного фільтра пульсації ефекти в процесі впуску і після закриття впускного клапана були присутні, але загасали явно швидше, ніж без нього. При цьому наявність фільтра в системі впуску призводило до зниження максимальної швидкості потоку повітря і ослаблення динаміки процесу, що добре узгоджується з раніше отриманими результатами в роботі.

Збільшення аеродинамічного опору вихлопної системи призводить до деякого збільшення максимальних тисків у процесі випуску, а також зміщення піків за ВМТ. При цьому можна відзначити, що установка глушника шуму випуску призводить до зменшення пульсацій тиску потоку повітря при всіх умовах як протягом процесу випуску, так і після закриття випускного клапана.

их. м / зі 118 100 46 16

1 1 к. Т «ААі до т 1 Закриття МпЦскного клапана

Відкриття Ьипіскного |<лапана ^ 1 1 А ікТКГ- ~/М" ^ 1

"" "І | у і \\ / ~ ^

540 (р, граб, п.к.й. 720 НМТ ВМТ

Мал. 5. Залежність швидкості повітря wх в випускному каналі від кута повороту колінчастого вала ф при різних частотах обертання колінчастого вала і різних фільтруючих елементах: а - п \u003d 1500 хв-1; б - 3000 хв-1. 1 - без фільтру; 2 - стандартний повітряний фільтр; 3 - тканинний фільтр

Рх. 5пр 0,150

1 1 1 1 1 1 1 1 1 II 1 1 + 1 II 1 + 1 л "А 11 1 + 1 / \\ 1. ', і II 1 + 1

відкриття | йипцскного 1 іклапана Л7 1 ч и _ / 7 / ", Г и 1 \\ Ч Закриття бьтцскного Г / КГкТї Алана -

ч- "1 + 1 1 + 1 1 і 1 Л Л _л / й й ч / 1 1

540 (р, труну, п.к.6. 720

Мал. 6. Залежність тиску рх в випускному каналі від кута повороту колінчастого вала ф при різних частотах обертання колінчастого вала і різних фільтруючих елементах: а - п \u003d 1500 хв-1; б - 3000 хв-1. 1 - без фільтру; 2 - стандартний повітряний фільтр; 3 - тканинний фільтр

На основі обробки залежностей зміни швидкості потоку за окремий такт було розраховано відносну зміну об'ємної витрати повітря Q через випускний канал при розміщенні глушника. Встановлено, що при низьких надлишкових тисках на випуску (0,1 МПа) витрата Q в випускний системі з глушником менше, ніж в системі без нього. При цьому якщо на частоті обертання колінчастого вала 600 хв-1 ця різниця становила приблизно 1,5% (що лежить в межах похибки), то при п \u003d 3000 мін4 ця різниця досягала 23%. Показано, що для високого надлишкового тиску, рівного 0,2 МПа, спостерігалася протилежна тенденція. Об'ємна витрата повітря через випускний канал з глушником був більше, ніж в системі без нього. При цьому при низьких частотах обертання колінчастого вала це перевищення становило 20%, а при п \u003d 3000 хв-1 -лише 5%. На думку авторів, подібний ефект можна пояснити деяким згладжуванням пульсацій швидкості потоку повітря в випускний системі при користуванні глушником шуму.

висновок

Проведене дослідження показало, що на процес впуску в поршневому двигуні внутрішнього згоряння істотно впливає аеродинамічний опір впускного тракту:

Зростання опору фільтруючого елемента згладжує динаміку процесу наповнення, але при цьому знижує швидкість потоку повітря, що відповідно зменшує коефіцієнт наповнення;

Вплив фільтра посилюється зі зростанням частоти обертання колінчастого вала;

Було встановлено граничне значення коефіцієнта опору фільтра (приблизно 50-55), після якого його величина не впливає на витрату.

При цьому було показано, що аеродинамічний опір вихлопної системи також значно впливає на газодинамічні і витратні характеристики процесу випуску:

Збільшення гідравлічного опору випускної системи в поршневому ДВС призводить до посилення пульсацій швидкості потоку повітря у випускному каналі;

При низьких надлишкових тисках на випуск в системі з глушником шуму спостерігається зменшення об'ємної витрати через випускний канал, тоді як при високих рь - навпаки, відбувається його збільшення в порівнянні з випускною системою без глушника.

Таким чином, отримані результати можуть бути використані в інженерній практиці з метою оптимального вибору характеристик глушників шуму впуску і випуску, що може надати положи-

тельное вплив на наповнення циліндра свіжим зарядом (коефіцієнт наповнення) і якість очищення циліндра двигуна від відпрацьованих газів (коефіцієнт залишкових газів) на певних швидкісних режимах роботи поршневих ДВС.

література

1. Драганов, Б.Х. Конструювання впускних і випускних каналів двигунів внутрішнього згоряння / Б.Х. Драганов, М.Г. Круглов, В. С. Обухова. - Київ: Вища шк. Головне вид-во, 1987. -175 с.

2. Двигуни внутрішнього згоряння. У 3 кн. Кн. 1: Теорія робочих процесів: навч. / В.Н. Лу-Канін, К.А. Морозов, А.С. Хачіян і ін .; під ред. В.Н. Луканіна. - М .: Вища. шк., 1995. - 368 с.

3. Шароглазов, Б.А. Двигуни внутрішнього згоряння: теорія, моделювання і розрахунок процесів: навч. по курсу «Теорія робочих процесів і моделювання процесів в двигунах внутрішнього згоряння» /Б.А. Шароглазов, М.Ф. Фарафонтов, В.В. Клементе; під ред. засл. деят. науки РФ Б.А. Шароглазова. - Челябінськ: ЮУрГУ, 2010. -382 с.

4. Сучасні підходи до створення дизелів для легкових автомобілів і малолітражних гру-

зовіков /А.Д. Блінов, П.А. Голубєв, Ю.Є. Драган та ін .; під ред. В. С. Папонова і А. М. Мінєєва. - М .: НДЦ «Інженер», 2000. - 332 с.

5. Експериментальне дослідження газодинамічних процесів в системі впуску поршневого ДВС / Б.П. Жилкін, Л.В. Плотніков, С.А. Корж, І.Д. Ларіонов // Двигунобудування. - 2009. -№ 1. - С. 24-27.

6. Про зміну газодинаміки процесу випуску в поршневих ДВС при установці глушника / Л.В. Плотніков, Б.П. Жилкін, А.В. Крестовським, Д.Л. Падаляк // Вісник академії військових наук. -2011. - № 2. - С. 267-270.

7. Пат. 81338 RU, МПК G01 Р5 / 12. Термоанемометр постійної температури / С.М. Плохов, Л.В. Плотніков, Б.П. Жилкін. - № 2008135775/22; заявл. 03.09.2008; опубл. 10.03.2009, Бюл. № 7.

Розмір: px

Починати показ зі сторінки:

транскрипт

1 На правах рукопису Машкур Махмуд А. МАТЕМАТИЧНА МОДЕЛЬ ПРОЦЕСІВ Газодинаміка І ТЕПЛООБМІНУ ВО впускної і випускної системи ДВС Спеціальність "Теплові двигуни" Автореферат дисертації на здобуття наукового ступеня кандидата технічних наук Санкт-Петербург 2005

2 Загальна характеристика роботи Актуальність дисертації У сучасних умовах прискореного темпу розвитку двигунобудування, а також домінуючих тенденцій інтенсифікації робочого процесу за умови підвищення його економічності, все більш пильну увагу приділяється скороченню термінів створення, доведення і модифікації наявних типів двигунів. Основним фактором, що істотно знижує як тимчасові, так і матеріальні витрати, в цьому завданні є застосування сучасних обчислювальних машин. Однак їх використання може бути ефективним лише за умови адекватності створюваних математичних моделей реальним процесам, що визначає функціонування ДВС. Особливо гостро на даному етапі розвитку сучасного двигунобудування стоїть проблема теплонапряженности деталей циліндропоршневої групи (ЦПГ) і головки циліндра, нерозривно пов'язана з підвищенням агрегатної потужності. Процеси миттєвого локального конвективного теплообміну між робочим тілом і стінок газо-повітряних каналів (ГВК) все ще залишаються недостатньо вивченими і є одним з вузьких місць в теорії ДВС. У зв'язку з цим створення надійних, експериментально обґрунтованих расчетнотеоретіческіх методів дослідження локального конвективного теплообміну в ГВК, що дають можливість отримувати достовірні оцінки температурного і теплонапруженого стану деталей ДВС, є актуальною проблемою. Її рішення дозволить здійснити обгрунтований вибір конструкторських і технологічних рішень, підвищити науково технічний рівень проектування, дасть можливість скоротити цикл створення двигуна і отримати економічний ефект за рахунок зниження собівартості і витрат на експериментальну доведення двигунів. Мета і завдання дослідження Основна мета дисертаційної роботи полягає у вирішенні комплексу теоретичних, експериментальних і методичних завдань, 1

3 пов'язаних зі створенням нових уточних математичних моделей і методів розрахунку локального конвективного теплообміну в ГВК двигуна. Відповідно до поставленої мети роботи вирішувалися такі основні завдання, значною мірою визначили і методичну послідовність виконання роботи: 1. Проведення теоретичного аналізу нестаціонарної течії потоку в ГВК і оцінка можливостей використання теорії прикордонного шару при визначенні параметрів локального конвективного теплообміну в двигунах; 2. Розробка алгоритму та чисельна реалізація на ЕОМ задачі нев'язкого течії робочого тіла в елементах системи впуску-випуску багатоциліндрового двигуна в нестаціонарної постановки для визначення швидкостей, температури і тиску, що використовуються в якості граничних умов для подальшого вирішення завдання газодинаміки і теплообміну в порожнинах ГВК двигуна. 3. Створення нової методики розрахунку полів миттєвих швидкостей обтікання робочим тілом ГВК в тривимірній постановці; 4. Розробка математичної моделі локального конвективного теплообміну в ГВК з використанням основ теорії прикордонного шару. 5. Перевірка адекватності математичних моделей локального теплообміну в ГВК шляхом порівняння експериментальних і розрахункових даних. Реалізація цього комплексу завдань дозволяє здійснити досягнення основної мети роботи - створення інженерного методу розрахунку локальних параметрів конвективного теплообміну в ГВК бензинового двигуна. Актуальність проблеми визначається тим, що рішення поставлених завдань дозволить здійснити обгрунтований вибір конструкторських і технологічних рішень на стадії проектування двигуна, підвищити науково технічний рівень проектування, дозволить скоротити цикл створення двигуна і отримати економічний ефект за рахунок зниження собівартості і витрат на експериментальну доведення виробу. 2

4 Наукова новизна дисертаційної роботи полягає в тому, що: 1. Вперше використана математична модель, раціонально поєднує одномірне уявлення газодинамічних процесів у впускний і випускний системі двигуна з тривимірним поданням течії газу в ГВК для розрахунку параметрів локального теплообміну. 2. Розвинені методологічні основи проектування і доведення бензинового двигуна шляхом модернізації та уточнення методів розрахунку локальних теплових навантажень і теплового стану елементів головки циліндрів. 3. Отримано нові розрахункові та експериментальні дані про просторові течіях газу у впускних і випускних каналах двигуна і тривимірному розподілі температур в тілі головки блоку циліндрів двигуна внутрішнього згоряння. Достовірність результатів забезпечена застосуванням апробованих методів розрахункового аналізу і експериментальних досліджень, загальних систем рівнянь, що відображають фундаментальні закони збереження енергії, маси, імпульсу з відповідними початковими і граничними умовами, сучасних чисельних методів реалізації математичних моделей, застосуванням ГОСТів та інших нормативних актів, відповідної градуювання елементів вимірювального комплексу в експериментальному дослідженні, а також задовільним узгодженням результатів моделювання і експерименту. Практична цінність отриманих результатів полягає в тому, що розроблені алгоритм і програма розрахунку замкнутого робочого циклу бензинового двигуна з одновимірним поданням газодинамічних процесів у впускний і випускний системах двигуна, а також алгоритм і програма розрахунку параметрів теплообміну в ГВК головки блоку циліндрів двигуна внутрішнього згоряння в тривимірній постановці, рекомендовані до впровадження. Результати теоретичного дослідження, підтверджені 3

5 експериментом, дозволяють значно скоротити витрати на проектування і доведення двигунів. Апробація результатів роботи. Основні положення дисертаційної роботи доповідалися на наукових семінарах кафедри ДВС СПбДПУ в р.р., на XXXI і XXXIII Тижнях науки СПбГПУ (2002 і 2004 р.р.). За матеріалами дисертації опубліковано 6 друкованих робіт. Структура і обсяг роботи Дисертація складається з вступу, п'яте розділів, висновків і списку використаних джерел із 129 найменувань. Вона містить 189 сторінки, в тому числі: 124 сторінок основного тексту, 41 малюнків, 14 таблиць, 6 фотознімків. Зміст роботи У вступі обґрунтовано актуальність теми дисертації, визначено мету і завдання досліджень, сформульовані наукова новизна і практична значущість роботи. Наведено загальну характеристику роботи. У першому розділі міститься аналіз основних робіт по теоретичному і експериментальному дослідженням процесу газодинаміки і теплообміну в ДВС. Ставиться завдання дослідження. Проведено огляд конструктивних форм випускних і впускних каналів в головці блоку циліндрів і аналіз методів та результатів експериментальних і розрахунково-теоретичних досліджень як стаціонарного, так і нестаціонарного течій газу в газоповітряних трактах двигунів внутрішнього згоряння. Розглянуто існуючі в даний час підходи до розрахунку і моделювання термо- і газодинамічних процесів, а також інтенсивності тепловіддачі в ГВК. Зроблено висновок, що більшість з них мають обмежену сферу застосування і не дають повної картини розподілу параметрів теплообміну по поверхнях ГВК. В першу чергу це пов'язано з тим, що рішення задачі про рух робочого тіла в ГВК проводиться в спрощеній одновимірної або двовимірної 4

6 постановці, що не застосовується випадку ГВК складної форми. Крім того, відзначено, що для розрахунку конвективного тепловіддачі в більшості випадків використовуються емпіричні або напівемпіричні формули, що також не дозволяє отримати в загальному випадку необхідну точність рішення. Найбільш повно ці питання раніше були розглянуті в роботах Бравіна В.В., Ісакова Ю.М., Гришина Ю.А., Круглова М.Г., Костіна А.К., Кавтарадзе Р.З., Овсяннікова М.К. , Петриченко Р.М., Петриченко М.Р., Розенбліта Г.Б., Страдомський М.В., чайні Н.Д., Шабанова А.Ю., Зайцева А.Б., мундштучний Д.А., Унру П.П., Шеховцова А.Ф., Вошні Г, Хейвуд Дж., Benson RS, Garg RD, Woollatt D., Chapman M., Novak JM, Stein RA, Daneshyar H., Horlock JH, Winterbone DE, Kastner LJ , Williams TJ, White BJ, Ferguson CR та ін. Проведений аналіз існуючих проблем та методик дослідження газодинаміки і теплообміну в ГВК дозволив сформулювати основну мету дослідження як створення методики визначення параметрів течії газу в ГВК в тривимірній постановці з подальшим розрахунком локального теплообміну в ГВК головок циліндрів швидкохідних ДВС і застосуванням цієї методики для вирішення практичних задач зниження теплової напруженості головок циліндрів і клапанів. У зв'язку з викладеним в роботі поставлені наступні завдання: - Створити нову методику одновимірно-тривимірного моделювання теплообміну в системах випуску і впуску двигуна з урахуванням складного тривимірного течії газу в них з метою отримання вихідної інформації для завдання граничних умов теплообміну при розрахунку завдань теплонапряженности головок циліндрів поршневих ДВС; - Розробити методику задання граничних умов на вході і виході з газовоздушного каналу на базі рішення одновимірної нестаціонарної моделі робочого циклу багатоциліндрового двигуна; - Перевірити достовірність методики за допомогою тестових розрахунків і зіставлення отриманих результатів з даними експерименту і розрахунків за методиками, раніше відомим в двигунобудування; 5

7 - Провести перевірку і доопрацювання методики шляхом виконання розрахунково-експериментального дослідження теплового стану головок циліндрів двигуна і проведення зіставлення експериментальних і розрахункових даних по розподілу температур в деталі. Другий розділ присвячено розробці математичної моделі замкнутого робочого циклу багатоциліндрового ДВС. Для реалізації схеми одновимірного розрахунку робочого процесу багатоциліндрового двигуна обраний відомий метод характеристик, що гарантує високу швидкість збіжності і стійкості процесу розрахунку. Газоповітряна система двигуна описується в вигляді аеродинамічний взаємопов'язаного набору окремих елементів циліндрів, ділянок впускних і випускних каналів і патрубків, колекторів, глушників, нейтралізаторів і труб. Процеси аеродинаміки в системах впуску-випуску описуються за допомогою рівнянь одновимірної газодинаміки нев'язкого стиснення газу: Рівняння нерозривності: ρ u ρ u + ρ + u + ρ t x x F df dx \u003d 0; F 2 \u003d π 4 D; (1) Рівняння руху: u t u + u x 1 p 4 f + + ρ x D 2 u 2 u u \u003d 0; f τ \u003d w; (2) 2 0.5ρu Рівняння збереження енергії: p p + u a t x 2 ρ \u200b\u200bx + 4 f D u 2 (k 1) ρ q u \u003d 0 2 u u; 2 kp a \u003d ρ, (3) де а- швидкість звуку; ρ-щільність газу; u-швидкість потоку уздовж осі х; t- час; p-тиск; f-коефіцієнт лінійних втрат; D-діаметр C трубопроводу; k \u003d P-відношення питомих теплоємностей. C V 6

8 В якості граничних умов ставляться (на основі основних рівнянь: нерозривності, збереження енергії і відносини щільності і швидкості звуку в неізентропіческом характер перебігу) умови на клапанних щілинах в циліндрах, а також умови на впуску і випуску з двигуна. Математична модель замкнутого робочого циклу двигуна включає в себе розрахункові співвідношення, що описують процеси в циліндрах двигуна і частинах впускних і випускних систем. Термодинамічний процес в циліндрі описується за допомогою методики, розробленої в СПбДПУ. Програма забезпечує можливість визначення миттєвих параметрів течії газу в циліндрах і в системах впуску та випуску для різних конструкцій двигунів. Розглянуто загальні аспекти застосування одновимірних математичних моделей методом характеристик (замкнутого робочого тіла) і показані деякі результати розрахунку зміни параметрів течії газу в циліндрах і у впускних і випускних системах одно- і багатоциліндрових двигунів. Отримані результати дозволяють оцінити ступінь досконалості організації систем впуску-випуску двигуна, оптимальність фаз газорозподілу, можливості газодинамической настройки робочого процесу, рівномірність роботи окремих циліндрів і т.д. Тиску, температури і швидкості потоків газу на вході і виході в газовоздушні канали головки блоку циліндра, визначені за допомогою даної методики, використовуються в подальших розрахунках процесів теплообміну в цих порожнинах в якості граничних умов. Третя глава присвячена опису нового чисельного методу, що дозволяє реалізувати розрахунок граничних умов теплового стану з боку газоповітряних каналів. Основними етапами розрахунку є: одновимірний аналіз нестаціонарного процесу газообміну на ділянках системи впуску та випуску методом характеристик (другий розділ), тривимірний розрахунок квзістаціонарного течії потоку у впускному і 7

9 випускному каналах методом кінцевих елементів МКЕ, розрахунок локальних коефіцієнтів тепловіддачі робочого тіла. Результати виконання першого етапу програми замкнутого циклу використовуються в якості граничних умов на наступних етапах. Для опису газодинамічних процесів в каналі була обрана спрощена квазістаціонарним схема течії нев'язкого газу (система рівнянь Ейлера) зі змінною формою області через необхідність обліку руху клапанів: r V \u003d 0 rr 1 (V) V \u003d p Складна геометрична конфігурація каналів, наявність в обсязі клапана, фрагмента направляючої втулки робить необхідним 8 ρ. (4) В якості граничних умов задавалися миттєві, усереднені по перетину швидкостей газу на вхідному і вихідному перерізі. Ці швидкості, а також температури і тиску в каналах, задавалися за результатами розрахунку робочого процесу багатоциліндрового двигуна. Для розрахунку завдання газодинаміки був обраний метод кінцевих елементів МКЕ, що забезпечує високу точність моделювання в поєднанні з прийнятними витратами на реалізацію розрахунку. Розрахунковий алгоритм МСЕ для вирішення даного завдання будується на базі мінімізації варіаційного функціоналу, отриманого шляхом перетворення рівнянь Ейлера з використанням методу Бубнова- Гальоркіна: (llllllmm) k UU Φ x + VU Φ y + WU Φ z + p ψ x Φ) llllllmmk (UV Φ x + VV Φ y + WV Φ z + p ψ y) Φ) llllllmmk (UW Φ x + VW Φ y + WW Φ z + p ψ z) Φ) llllllm (U Φ x + V Φ y + W Φ z ) ψ dxdydz \u003d 0. dxdydz \u003d 0, dxdydz \u003d 0, dxdydz \u003d 0, (5)

10 використання об'ємної моделі розрахункової області. Приклади розрахункових моделей впускного і випускного каналу двигуна ВАЗ-2108 наведені на рис. 1. -б- а- Рис.1. Моделі (а) впускного і (б) випускного каналах двигуна ВАЗ Для розрахунку теплообміну в ГВК обрана об'ємна двохзонна модель, основним допущенням якої є поділ обсягу на області нев'язкого ядра і прикордонного шару. Для спрощення рішення завдань газодинаміки ведеться в квазістаціонарних постановці, тобто без урахування стисливості робочого тіла. Проведений аналіз похибки розрахунку показав можливість подібного допущення за винятком короткочасного ділянки часу відразу після відкриття клапанної щілини, що не перевищує 5 7% від загального часу циклу газообміну. Процес теплообміну в ГВК при відкритих і закритих клапанах має різну фізичну природу (вимушена і вільна конвекція відповідно), тому і описуються вони за двома різними методиками. При закритих клапанах використовується методика, запропонована МГТУ, в якій враховується два процеси теплового навантаження головки на цій ділянці робочого циклу за рахунок власне вільної конвекції і за рахунок вимушеної конвекції, зумовленої залишковими коливаннями стовпа 9

11 газу в каналі під впливом змінності тиску в колекторах багатоциліндрового двигуна. При відкритих клапанах процес теплообміну підпорядковується законам вимушеної конвекції, яку ініціює організованим рухом робочого тіла на такті газообміну. Розрахунок теплообміну в цьому випадку передбачає двоетапне рішення задачі аналіз локальної миттєвої структури газового потоку в каналі і розрахунок інтенсивності теплообміну через прикордонний шар, що утворюється на стінках каналу. Розрахунок процесів конвективного теплообміну в ГВК будувався за моделлю теплообміну при обтіканні плоскої стінки з урахуванням або ламінарної, або турбулентної структури прикордонного шару. Критеріальні залежності теплообміну були уточнені за результатами зіставлення даних розрахунку і експерименту. Остаточний вигляд цих залежностей наведено нижче: Для турбулентного прикордонного шару: 0.8 x Re 0 Nu \u003d Pr (6) x Для ламінарного прикордонного шару: Nu Nu xx αxx \u003d λ (m, pr) \u003d Φ Re tx Kτ, (7) де: α x локальний коефіцієнт тепловіддачі; Nu x, Re x місцеві значення чисел Нуссельта і Рейнольдса відповідно; Pr число Прандтля в даний момент часу; m характеристика Градієнтні потоку; Ф (m, Pr) функція, що залежить від показника градієнтними потоку m і числа 0.15 Прандтля робочого тіла Pr; K τ \u003d Re d - поправочний множник. За миттєвим значенням теплових потоків в розрахункових точках теплосприймаючої поверхні проводилося усереднення за цикл з урахуванням періоду закриття клапана. 10

12 Четверта глава присвячена опису експериментального дослідження температурного стану головки циліндрів двигуна внутрішнього згоряння. Експериментальне дослідження виконувалося з метою перевірки і уточнення теоретичної методики. У завдання експерименту входило отримання розподілу стаціонарних температур в тілі головки циліндрів і порівняння результатів розрахунків з отриманими даними. Експериментальна робота проведена на кафедрі ДВЗ СПбДПУ на випробувальному стенді з автомобільним двигуном ВАЗ Роботи із препарування головки циліндрів виконані автором на кафедрі ДВЗ СПбДПУ за методикою, використовуваної в дослідницькій лабораторії ВАТ «Зірка» (м.Санкт-Петербург). Для вимірювання стаціонарного розподілу температур в голівці використано 6 хромель-копелеві термопар, встановлених уздовж поверхонь ГВК. Заміри проводились як по швидкісній, так і по навантажувальним характеристикам при різних постійних частотах обертання колінчастого вала. В результаті проведеного експерименту отримані показання термопар, знятих при роботі двигуна по швидкісним і навантажувальним характеристикам. Таким чином, проведені дослідження показують, які реальні значення температур в деталях головки блоку циліндра ДВС. Більше уваги приділено в розділі обробці результатів експерименту та оцінки похибок. У п'ятому розділі наводяться дані розрахункового дослідження, яке проводилося з метою перевірки математичної моделі теплообміну в ГВК зіставленням розрахункових даних з результатами експерименту. На рис. 2 представлені результати моделювання швидкісного поля у впускному і випускному каналах двигуна ВАЗ-2108 методом кінцевих елементів. Отримані дані повністю підтверджують неможливість вирішення даного завдання в будь-якій іншій постановці, крім тривимірної, 11

13 оскільки стрижень клапана має суттєвий вплив на результати у відповідальній зоні головки циліндра. На рис. 3-4 наведені приклади результатів розрахунку інтенсивностей теплообміну у впускному і випускному каналах. Дослідження показали, зокрема, істотно нерівномірний характер тепловіддачі як по котра утворює каналу, так і по азимутальной координаті, що, очевидно, пояснюється суттєво нерівномірною структурою газовоздушного потоку в каналі. Підсумкові поля коефіцієнтів тепловіддачі використовувалися для подальших розрахунків температурного стану головки блоку циліндрів. Граничні умови теплообміну по поверхнях камери згоряння і порожнин охолодження задавалися з використанням методик, розроблених в СПбДПУ. Розрахунок температурних полів в голівці циліндрів проводився для сталих режимів роботи двигуна з частотою обертання колінчастого вала від 2500 до 5600 об / хв по зовнішній швидкісній і навантажувальним характеристикам. В якості розрахункової схеми головки блоку циліндрів двигуна ВАЗ обрана секція головки, що відноситься до першого циліндра. При моделюванні теплового стану використаний метод кінцевих елементів в тривимірній постановці. Повна картина теплових полів для розрахункової моделі приведена на рис. 5. Результати розрахункового дослідження представлені у вигляді зміни температур в тілі головки циліндрів в місцях установки термопар. Зіставлення даних розрахунку і експерименту показало їх задовільну збіжність, похибка розрахунку не перевищила 3 \u200b\u200b4%. 12

14 Випускний канал, φ \u003d 190 Впускний канал, φ \u003d 380 φ \u003d 190 φ \u003d 380 Рис.2. Поля швидкостей руху робочого тіла в випускному і впускному каналах двигуна ВАЗ-2108 (n \u003d 5600) α (Вт / м 2 К) α (Вт / м 2 К), 0 0,2 0,4 0,6 0,8 1 , 0 S -б- 0 0,0 0,2 0,4 0,6 0,8 1,0 S-а- Рис. 3. Криві зміни інтенсивностей теплообміну по зовнішніх поверхнях а- Випускний канал -б- Впускний канал. 13

15 α (Вт / м 2 К) на початку впускного каналі в середині впускного каналі в кінці впускного каналі перетин-1 α (Вт / м 2 К) на початку випускного каналу в середині випускного каналу в кінці випускного каналу перетин Кут повороту Кут повороту - б-Впускний канал а- Випускний канал Рис. 4. Криві зміни інтенсивностей теплообміну в залежності від кута повороту колінчастого вала. а- -б- Рис. 5. Загальний вигляд кінцево-елементної моделі головки циліндрів (а) і розрахункові поля температур (n \u003d 5600 об / хв) (б). 14

16 Висновки по роботі. За результатами проведеної роботи можна зробити наступні основні висновки: 1. Запропоновано і реалізовано нову одновимірно-тривимірна модель розрахунку складних просторових процесів течії робочого тіла і теплообміну в каналах головки блоку циліндрів довільного поршневого ДВС, що відрізняється більшою в порівнянні з раніше запропонованими методами точністю і повної універсальністю результатів. 2. Отримано нові дані про особливості газодинаміки і теплообміну в газоповітряних каналах, що підтверджують складний просторово нерівномірний характер процесів, практично виключає можливість моделювання в одновимірних і двовимірних варіантах постановках задачі. 3. Підтверджено необхідність завдання граничних умов для розрахунку завдання газодинаміки впускних і випускних каналів виходячи з рішення задачі нестаціонарної течії газу в трубопроводах і каналах багатоциліндрового двигуна. Доведено можливість розгляду цих процесів в одновимірної постановці. Запропоновано і реалізовано методику розрахунку цих процесів на базі методу характеристик. 4. Проведене експериментальне дослідження дозволило внести уточнення в розроблені розрахункові методики і підтвердило їх точність і достовірність. Зіставлення розрахункових і заміряних температур в деталі показало максимальну похибку результатів, що не перевищує 4%. 5. Запропонована розрахунково-експериментальна методика може бути рекомендована для впровадження на підприємствах галузі двигунобудування при проектуванні нових і доведенні вже існуючих поршневих чотиритактних ДВС. 15

17 По темі дисертації опубліковані наступні роботи: 1. Шабанов А.Ю., Машкур М.А. Розробка моделі одновимірної газодинаміки у впускних і випускних системах двигунів внутрішнього згоряння // Деп. в ВІНІТІ: N1777-B2003 від, 14 с. 2. Шабанов А.Ю., Зайцев А.Б., Машкур М.А. Звичайно-елементний метод розрахунку граничних умов теплового навантаження головки блоку циліндрів поршнвого двигуна // Деп. в ВІНІТІ: N1827-B2004 від, 17 с. 3. Шабанов А.Ю., Махмуд Машкур А. Розрахунково-експериментальної дослідження температурного стану головки блоку циліндрів двигуна // Двигунобудування: Науково-технічний збірник, повященний 100-річчя від дня народження Заслуженого діяча науки і техніки Російської Федерації професора Н.Х. Дьяченко // Відп. ред. Л. Є. Магидович. СПб .: Изд-во Політехнічного університету, з Шабанов А.Ю., Зайцев А.Б., Машкур М.А. Новий метод розрахунку граничних умов теплового навантаження головки блоку циліндрів поршневого двигуна // Двигунобудування, N5 2004, 12 с. 5. Шабанов А.Ю., Махмуд Машкур А. Застосування методу скінченних елементів при визначенні граничних умов теплового стану головки циліндра // XXXIII Тиждень науки СПбГПУ: Матеріали міжвузівської наукової конференції. СПб .: Изд-во Політехнічного університету, 2004, с Машкур Махмуд А., Шабанов А.Ю. Застосування методу характеристик до дослідження параметрів газу в газоповітряних каналах ДВС. XXXI Тиждень науки СПбГПУ. Ч. II. Матеріали міжвузівської наукової конференції. СПб .: Изд-во СПбДПУ, 2003, с

18 Робота виконана в Державному освітній установі вищої професійної освіти «Санкт-Петербурзький державний політехнічний університет», на кафедрі двигунів внутрішнього згоряння. Науковий керівник - кандидат технічних наук, доцент Шабанов Олександр Юрійович Офіційні опоненти - доктор технічних наук, професор Єрофєєв Валентин Леонідович кандидат технічних наук, доцент Кузнєцов Дмитро Борисович Провідна установа - ГУП «ЦНІДІ» Захист відбудеться 2005 року в годин на засіданні спеціалізованої вченої ради Д при державному освітній установі вищої професійної освіти «Санкт-Петербурзький державний політехнічний університет» за адресою:, Санкт-Петербург, вул. Політехнічна 29, Головна будівля, ауд .. З дисертацією можна ознайомитися у фундаментальній бібліотеці ГОУ «СПбДПУ». Автореферат розісланий 2005 Вчений секретар спеціалізованої вченої ради, доктор технічних наук, доцент Хрустальов Б.С.


На правах рукопису Булгаков Микола Вікторович МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ І ЧИСЕЛЬНІ ДОСЛІДЖЕННЯ турбулентності Тепломассоперенос У двигунах внутрішнього згоряння 05.13.18 -математичне моделювання,

ВІДГУК офіційного опонента Драгомирова Сергія Григоровича на дисертацію Смоленської Наталії Михайлівни «Поліпшення економічності двигунів з іскровим запалюванням за рахунок застосування газових композитних

ВІДГУК офіційного опонента к.т.н., Кудінова Ігоря Васильовича на дисертацію Супельняк Максима Ігоровича «Дослідження циклічних процесів теплопровідності і термопружності в термічному шарі твердого

Лабораторна робота 1. Розрахунок критеріїв подібності для дослідження процесів тепло- і масопередачі в рідинах. Мета роботи Використання інструментальних засобів електронних таблиць MS Excel при розрахунку

12 червня 2017 р Спільний процес конвекції і теплопровідності називається конвективним теплообміном. Природна конвекція викликається різницею питомих ваг нерівномірно нагрітої середовища, здійснюється

РОЗРАХУНКОВО-ЕКСПЕРИМЕНТАЛЬНИЙ МЕТОД ВИЗНАЧЕННЯ КОЕФІЦІЄНТА ВИТРАТИ продувному ВІКОН ДВОТАКТНОГО ДВИГАТЕЛЯ з кривошипно-камерної Е.А. Герман, А.А. Балашов, А.Г. Кузьмін 48 Потужностні і економічні показники

УДК 621.432 Методика оцінки ГРАНИЧНИХ УМОВ ПРИ ВИРІШЕННІ ЗАВДАННЯ ВИЗНАЧЕННЯ ТЕПЛОВОГО СТАНУ ПОРШНЯ ДВИГАТЕЛЯ 4Ч 8,2 / 7,56 Г.В. Ломакін Запропоновано універсальну методику оцінки граничних умов при

Секція «ПОРШНЕВІ І газотурбінних двигунів». Метод підвищення наповнення циліндрів високооборотного двигуна внутрішнього згоряння д.т.н. проф. Фомін В.М., к.т.н. Руновському К.С., к.т.н. Апелінскій Д.В.,

УДК 621.43.016 А.В. Трин, канд. техн. наук, А.Г. Косулин, канд. техн. наук, А.Н. Авраменко, інж. ВИКОРИСТАННЯ ЛОКАЛЬНОГО ПОВІТРЯНОГО ОХОЛОДЖЕННЯ клапан УЗЛА ДЛЯ форсувати АВТОТРАКТОРНИХ ДИЗЕЛІВ

Коефіцієнт тепловіддачі ВИПУСКНОГО КОЛЛЕКТОРА ДВС Сухонос Р. Ф., магістрант ЗНТУ Керівник Мазін В. А., канд. техн. наук, доц. ЗНТУ З поширенням комбінованих ДВС стає важливим вивчення

ДЕЯКІ НАУКОВО-МЕТОДИЧНІ НАПРЯМКИ ДІЯЛЬНОСТІ ПРАЦІВНИКІВ СИСТЕМИ ДПО У АлтГТУ РОЗРАХУНКОВО-ЕКСПЕРИМЕНТАЛЬНИЙ МЕТОД ВИЗНАЧЕННЯ КОЕФІЦІЄНТА ВИТРАТИ продувному ВІКОН ДВОТАКТНОГО ДВИГАТЕЛЯ з кривошипно-камерної

ДЕРЖАВНЕ КОСМІЧНЕ АГЕНСТВО УКРАЇНИ ДЕРЖАВНЕ ПІДПРИЄМСТВО «КОНСТРУКТОРСЬКЕ БЮРО« ПІВДЕННЕ »ІМ. М.К. ЯНГОЛ »На правах рукопису Шевченка Сергій Андрійович УДК 621.646.45 УДОСКОНАЛЕННЯ пневмосистеми

АНОТАЦІЯ дисципліни (навчального курсу) М2.ДВ4 Локальний теплообмін в ДВС (шифр і найменування дисципліни (навчального курсу)) Сучасний розвиток техніки вимагає широкого впровадження в промисловість нових

ТЕПЛОПРОВІДНІСТЬ В нестаціонарних процесів Розрахунок температурного поля і теплових потоків в процесі теплопровідності розглянемо на прикладі нагріву або охолодження твердих тіл, оскільки в твердих тілах

ВІДГУК офіційного опонента про дисертаційній роботі Москаленко Івана Миколайовича «ВДОСКОНАЛЕННЯ МЕТОДІВ ПРОФІЛІРО- вання БІЧНИЙ ПОВЕРХНІ ПОРШНІВ ДВИГАТЕЛЕЙ внутрішнього згоряння», представленої

УДК 621.43.013 Є.П. Воропаєв, інж. МОДЕЛЮВАННЯ ЗОВНІШНЬОЇ ШВИДКІСНИЙ ХАРАКТЕРИСТИКИ ДВИГУНА спортбайк SUZUKI GSX-R750 Введення Застосування тривимірних газодинамічних моделей в проектуванні поршневих

94 Техніка і технології УДК 6.436 П. В. Дворкін Петербурзький державний університет шляхів сполучення ВИЗНАЧЕННЯ Коефіцієнт тепловіддачі В СТІНКИ КАМЕРИ ЗГОРЯННЯ В даний час не існує єдиного

ВІДГУК офіційного опонента на дисертаційну роботу Чічіланова Іллі Івановича, виконану на тему «Удосконалення методики і засобів діагностування дизельних двигунів» на здобуття наукового ступеня

УДК 60.93.6: 6.43 Е. А. Кочетков, А. С. Курильов ÃÐÀÍÈ ÍÛÅ ÏÀÐÀÌÅÒÐÛ ÈÑÑËÅÄÎÂÀÍÈÉ ÊÀÂÈÒÀÖÈÎÍÍÛÕ ÐÀÇÐÓØÅÍÈÉ ÎÁÐÀÇÖÎÂ ÍÀ ÝÊÑÏÅÐÈÌÅÍÒÀËÜÍÎÉ ÓÑÒÀÍÎÂÊÅ Дослідження кавитационного зносу на двигунах внутрішнього

Лабораторна робота 4 ДОСЛІДЖЕННЯ тепловіддачі при ВІЛЬНОМУ РУХ ПОВІТРЯ Завдання 1. Провести теплотехнічні вимірювання для визначення коефіцієнта тепловіддачі горизонтальної (вертикальної) труби

УДК 612.43.013 Робочі процеси в ДВС А.А. Хандрімайлов, інж., В.Г. Солодов, д-р техн. наук СТРУКТУРА ТЕЧІЇ повітряного ЗАРЯДУ В ЦИЛІНДРІ ДИЗЕЛЯ НА такту впуску І стиснення Введення Процес об'ємно-плівкового

УДК 53.56 АНАЛІЗ РІВНЯНЬ ламінарними ПРИКОРДОННОГО ШАРУ Докт. техн. наук, проф. Есьман Р. І. Білоруський національний технічний університет При транспортуванні рідких енергоносіїв в каналах і трубопроводах

ЗАТВЕРДЖУЮ: ьд у I / - гт л. еоректор з наукової роботи та А * ^ 1 доктор біологічні! сварок М.Г. Баришев ^., - * с ^ х \\ "л, 2015 р ВІДГУК ЯКІ ВЕДУТЬ ОРГАНІЗАЦІЇ на дисертаційну роботу Ярцевої Олени Павлівни

Теплопередачі План лекції: 1. Тепловіддача при вільному русі рідини у великому обсязі. Тепловіддача при вільному русі рідини в обмеженому просторі 3. Вимушене рух рідини (газу).

Лекція 13 РОЗРАХУНКОВІ Рівняння У ПРОЦЕСАХ ТЕПЛООБМІНУ Визначення коефіцієнтів тепловіддачі в процесах без зміни агрегатного стану теплоносія Теплообмінні процеси без зміни агрегатного

ВІДГУК офіційного опонента на дисертацію Некрасової Світлани Олегівни «Розробка узагальненої методики проектування двигуна з зовнішнім підведенням тепла з пульсаційної трубою», представлену до захисту

15.1.2. Конвективні Тепловіддача при вимушеному РУХ ТЕКУЧОГО СЕРЕДОВИЩА В труб і каналів У цьому випадку безрозмірний коефіцієнт тепловіддачі критерій (число) Нуссельта залежить від критерію Грасгофа (при

ВІДГУК офіційного опонента Цидипова Балдандоржо Дашиевич на дисертаційну роботу Дабаевой Марії Жалсановни «Метод дослідження коливань систем твердих тіл, встановлених на пружному стрижні, на основі

РОСІЙСЬКА ФЕДЕРАЦІЯ (19) RU (11) (51) МПК F02B 27/04 (2006.01) F01N 13/08 (2010.01) 169 115 (13) U1 RU 1 6 9 1 1 5 U 1 ФЕДЕРАЛЬНА СЛУЖБА У інтелектуальної власності (12) ОПИС КОРИСНОЇ МОДЕЛІ

МОДУЛЬ. Конвективного теплообміну в однофазних середовищах Спеціальність 300 «Технічна фізика» Лекція 10. Подоба і моделювання процесів конвективного теплообміну Моделювання процесів конвективного теплообміну

УДК 673 РВ КОЛОМІЄЦЬ (Україна, Дніпропетровськ, Інститут технічної механіки НАН України і ДКА України) конвективного теплообміну В АЕРОФОНТАННОЙ сушарки Постановка проблеми Конвективная сушка продуктів заснована

Відгук офіційного опонента на дисертаційну роботу Подригі Вікторії Олегівни «багатомасштабного чисельне моделювання течій газу в каналах технічних микросистем», представлену на здобуття наукового

ВІДГУК офіційного опонента на дисертацію Алюкова Сергія Вікторовича «Наукові основи інерційних безступінчатих передач підвищеної навантажувальної здатності», представлену на здобуття наукового ступеня

Міністерство освіти і науки Російської Федерації Державна освітня установа вищої професійної освіти САМАРСЬКИЙ ДЕРЖАВНИЙ АЕРОКОСМІЧНИЙ УНІВЕРСИТЕТ імені академіка

ВІДГУК офіційного опонента Павленко Олександра Миколайовича на дисертацію Баканова Максима Олеговича «Дослідження динаміки процесу пороутворення при термічній обробці пеностекольной шихти», представлену

Д "спбпу a" "ротега o" "а IIIII I Л 1 !! ^ .1899 ... Г освіти та науки Росії федеральне державне автономне освітня установа вищої освіти« Санкт-Петербурзький політехнічний університет

ВІДГУК офіційного опонента на дисертацію Лепьошкіну Дмитра Ігоровича на тему «Поліпшення показників дизеля в умовах експлуатації підвищенням стабільності роботи паливної апаратури», представленої

Відгук офіційного опонента на дисертаційну роботу Кобякова Юлії В'ячеславівни на тему: "Якісний аналіз повзучості нетканих матеріалів на стадії організації їх виробництва з метою підвищення конкурентоспроможності,

Випробування проводилися на моторному стенді з інжекторним двигуном ВАЗ-21126. Двигун був встановлений на гальмівному стенді типу «MS-VSETIN», обладнаному вимірювальною апаратурою, що дозволяє контролювати

Електронний журнал «Технічна акустика» http://webceter.ru/~eeaa/ejta/ 004, 5 Псковський політехнічний інститут Росія, 80680, м Псков, вул. Л. Толстого, 4, e-mail: [Email protected] Про швидкості звуку

Відгук офіційного опонента на дисертаційну роботу Єгорової Марини Авініровни на тему: "Розробка методів моделювання, прогнозування та оцінки експлуатаційних властивостей полімерних текстильних канатів

У просторі швидкостей. Дана робота фактично спрямована на створення промислового пакета для розрахунків течій розрідженого газу на основі рішення кінетичного рівняння з модельним інтегралом зіткнень.

ОСНОВИ ТЕОРІЇ ТЕПЛООБМІНУ Лекція 5 План лекції: 1. Загальні поняття теорії конвективного теплообміну. Тепловіддача при вільному русі рідини у великому обсязі 3. Тепловіддача при вільному русі рідини

Неявні методи РІШЕННЯ сполучених ЗАВДАНЬ ламінарними ПРИКОРДОННОГО ШАРУ НА пластини План заняття: 1 Мета роботи Диференціальні рівняння теплового прикордонного шару 3 Опис розв'язуваної задачі 4 Метод рішення

Методика розрахунку температурного стану головних частин елементів ракетно-космічної техніки при їх наземної експлуатації # 09, вересень 2014 Копитов В. С., Пучков В. М. УДК: 621.396 Росія, МГТУ ім.

Напруг і реальну роботу фундаментів при малоциклових навантаженнях з урахуванням передісторії навантажень. Відповідно до цього, тема досліджень є актуальною. Оцінка структури та змісту роботи В

ВІДГУК офіційного опонента доктора технічних наук, професора Павлова Павла Івановича на дисертаційну роботу Кузнєцова Олексія Миколайовича на тему: «Розробка системи активного шумозаглушення в

1 Міністерство освіти і науки Російської Федерації Федеральне державне бюджетне освітня установа Вищої професійної освіти «Володимирський державний університет

В спеціалізованої вченої ради Д 212.186.03 ФГБОУ ВО «Пензенський державний університет» Вченому секретарю д.т.н., професору Воячек І.І. 440026, м Пенза, вул. Червона, 40 ВІДГУК ОФІЦІЙНОГО ОПОНЕНТА Семенова

ЗАТВЕРДЖУЮ: Перший проректор, проректор з наукової та інноваційної роботи федерального державного бюджетного освітнього учреждецщ ^^ исшего освіти ^ ^ жавного університет) Игорьевич

КОНТРОЛЬНО-ВИМІРЮВАЛЬНІ МАТЕРІАЛИ з дисципліни «Силові агрегати» Питання до заліку 1. Для чого призначений двигун, і які типи двигунів встановлюють на вітчизняних автомобілях? 2. Класифікація

Д.В. Гриньов (к. Т. Н.), М.А. Донченко (к. Т. Н., Доцент), А.Н. Іванов (аспірант), А.Л. Пермінов (аспірант) РОЗРОБКА МЕТОДИКИ РОЗРАХУНКУ І КОНСТРУЮВАННЯ ДВИГАТЕЛЕЙ роторно-ТИПУ З зовнішнім підведенням

Тривимірне моделювання робочого процесу в авіаційному роторно-поршневому двигуні Зеленцов А.А., Мінін В.П. ЦИАМ ім. П.І. Баранова Від. 306 «Авіаційні поршневі двигуни» 2018 Мета роботи роторно-поршневі

Неізотерміческімі МОДЕЛЬ ТРАНСПОРТУ ГАЗУ Трофимов АС, Куцев ВА, Кочарян ЕВ г Краснодар При описі процесів перекачування природного газу по МГ, як правило, розглядаються окремо завдання гідравліки і теплообміну

УДК 6438 МЕТОД РОЗРАХУНКУ ИНТЕНСИВНОСТИ ТУРБУЛЕНТНОСТІ ПОТОКУ ГАЗУ НА ВИХІД ІЗ КАМЕРИ ЗГОРЯННЯ газотурбінного двигуна 007 А В Григор'єв, В А Митрофанов, Про А Рудаков, А В Соловйова ВАТ «Клімов», г Санкт-Петербург

Детонація ГАЗОВОЇ СУМІШІ В шорсткості труб і щілинах В.Н. ОХІТІН С.І. КЛІМАЧКОВ І.А. Перевалі Московський Державний Технічний Університет ім. Н.е. Баумана Москва Росія Газодинамічні параметри

Лабораторна робота 2 ДОСЛІДЖЕННЯ тепловіддачі при вимушеної конвекції Мета роботи експериментальне визначення залежності коефіцієнта тепловіддачі від швидкості руху повітря в трубі. отримані

Лекція. Дифузійний прикордонний шар. Рівняння теорії прикордонного шару при наявності масообміну Поняття прикордонного шару, розглянуте в п. 7. і 9. (для гідродинамічного і теплового прикордонних шарів

Явний МЕТОД ВИРІШЕННЯ УРАВЕНЕНІЙ ламінарними ПРИКОРДОННОГО ШАРУ НА пластини Лабораторна робота 1, План заняття: 1. Мета роботи. Методи рішення рівнянь прикордонного шару (методичний матеріал) 3. Диференціальні

УДК 621.436 Н. Д. чайна, Л. Л. Мягков, М. С. Маластовскій МЕТОДИКА РОЗРАХУНКУ узгодити ТЕМПЕРАТУРНИХ ПОЛІВ кришки ЦИЛІНДРА з клапанами Запропоновано методику розрахунку узгоджених полів кришки циліндра

# 8, серпень 6 УДК 533655: 5357 Аналітичні формули для розрахунку теплових потоків на затуплених тілах малого подовження Волков МН, студент Росія, 55, г Москва, МГТУ ім Н Е Баумана, Аерокосмічний факультет,

Відгук офіційного опонента на дисертацію Самойлова Дениса Юрійовича «Інформаційно-вимірювальна і керуюча система для інтенсифікації видобутку нафти і визначення обводнення продукції свердловин»,

Федеральне агентство з освіти Державна освітня установа вищої професійної освіти Тихоокеанський Державний університет Теплова напруженість деталей ДВЗ Методичні

Відгук офіційного опонента доктора технічних наук, професора Лабудіна Бориса Васильовича на дисертаційну роботу Сюй Юня на тему: «Підвищення несучої здатності з'єднань елементів дерев'яних конструкцій

Відгук офіційного опонента Львова Юрія Миколайовича на дисертацію МЕЛЬНИКОВОЇ Ольги Сергіївни «Діагностика головною ізоляції силових маслонаповнених електроенергетичних трансформаторів по статистичному

УДК 536.4 Горбунов А.Д. д-р техн. наук, проф., ДДТУ ВИЗНАЧЕННЯ Коефіцієнт тепловіддачі ПРИ турбулентної течії У трубах і каналах аналітичних методів Аналітичний розрахунок коефіцієнта тепловіддачі

Використання резонансних вихлопних труб на моторних моделях всіх класів дозволяє різко підвищити спортивні результати змагань. Однак геометричні параметри труб визначаються, як правило, методом проб і помилок, оскільки до теперішнього часу не існує чіткого розуміння і чіткого тлумачення процесів, що відбуваються в цих газодинамічних пристроях. А в нечисленних джерелах інформації з цього приводу наводяться суперечливі висновки, що мають довільне трактування.

Для детального дослідження процесів в трубах налаштованого вихлопу була створена спеціальна установка. Вона складається з стенду для запуску двигунів, перехідника мотор - труба з штуцерами для відбору статичного і динамічного тиску, двох п'єзоелектричних датчиків, двухлучевого осцилографа С1-99, фотоапарата, резонансної вихлопної труби від двигуна R-15 з «телескопом» і саморобної труби з чорнінням поверхні і додатковою теплоізоляцією.

Тиск в трубах в районі вихлопу визначалося наступним чином: мотор виводився на резонансні обертів (26000 об / хв), дані з приєднаних до штуцерів відбору тиску п'єзоелектричних датчиків виводилися на осцилограф, частота розгортки якого синхронізована з частотою обертання двигуна, і осцилограма реєструвалася на фотоплівку.

Після проявлення плівки в контрастному проявнику зображення переносилося на кальку в масштабі екрану осцилографа. Результати для труби від двигуна R-15 наведені на малюнку 1 і для саморобної труби з чорнінням і додатковою теплоізоляцією - на малюнку 2.

На графіках:

Р дин - динамічний тиск, Р ст - статичний тиск. ОВО - відкриття вихлопного вікна, НМТ - коефіцієнт корисної, ЗВО - закриття вихлопного вікна.

Аналіз кривих дозволяє виявити розподіл тиску на вході резонансної труби в функції фази повороту коленвала. Підвищення динамічного тиску з моменту відкриття вихлопного вікна з діаметром вихідного патрубка 5 мм відбувається для R-15 приблизно до 80 °. А його мінімум знаходиться в межах 50 ° - 60 ° від нижньої мертвої точки при максимальній продувке. Підвищення тиску в відбитої хвилі (від мінімуму) в момент закриття вихлопного вікна складає близько 20% від максимального значення Р. Запізнення в дії відбитої хвилі вихлопних газів - від 80 до 90 °. Для статичного тиску характерно підвищення в межах 22 ° з «плато» на графіку аж до 62 ° від моменту відкриття вихлопного вікна, з мінімумом, що знаходяться в 3 ° від моменту нижньої мертвої точки. Очевидно, що в разі використання аналогічної вихлопної труби коливання продувки відбуваються в 3 ° ... 20 ° після нижньої мертвої точки, а аж ніяк не в 30 ° після відкриття вихлопного вікна, як вважалося раніше.

Дані дослідження саморобної труби відрізняються від даних R-15. Підвищення динамічного тиску до 65 ° від моменту відкриття вихлопного вікна супроводжується мінімумом, розташованим в 66 ° після нижньої мертвої точки. При цьому підвищення тиску відбитої хвилі від мінімуму становить близько 23%. Запізнення в дії вихлопних газів менше, що пов'язано, ймовірно, з підвищенням температури в теплоізольованої системі, і становить близько 54 °. Коливання продувки відзначаються в 10 ° після нижньої мертвої точки.

Порівнюючи графіки, можна помітити, що статичний тиск в теплоізольованої труби в момент закриття вихлопного вікна менше, ніж в R-15. Однак динамічний тиск має максимум відбитої хвилі в 54 ° після закриття вихлопного вікна, а в R-15 цей максимум зміщений на цілих 90 "! Відмінності пов'язані з різницею в діаметрах вихлопних патрубків: на R-15, як вже зазначалося, діаметр дорівнює 5 мм, а на теплоизолированной - 6,5 мм. Крім того, за рахунок більш досконалої геометрії труби R-15 коефіцієнт відновлення статичного тиску у неї більше.

Коефіцієнт корисної дії резонансної вихлопної труби в значній мірі залежить від геометричних параметрів самої труби, перетину вихлопного патрубка двигуна, температурного режиму і фаз газорозподілу.

Застосування контротражателей і підбір температурного режиму резонансної вихлопної труби дозволить змістити максимум тиску відбитої хвилі вихлопних газів до моменту закриття вихлопного вікна і таким чином різко збільшити ефективність її дії.

© 2021 bugulma-lada.ru - Портал для власників автомобілів